scholarly journals Monitoring shipping emissions in the German Bight using MAX-DOAS measurements

2017 ◽  
Vol 17 (18) ◽  
pp. 10997-11023 ◽  
Author(s):  
André Seyler ◽  
Folkard Wittrock ◽  
Lisa Kattner ◽  
Barbara Mathieu-Üffing ◽  
Enno Peters ◽  
...  

Abstract. A 3-year time series of ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of NO2 and SO2 on the island Neuwerk has been analyzed for contributions from shipping emissions. The island is located in the German Bight, close to the main shipping lane (at a distance of 6–7 km) into the river Elbe towards the harbor of Hamburg. Measurements of individual ship plumes as well as of background pollution are possible from this location. A simple approach using the column amounts of the oxygen molecule dimer or collision complex, O4, for the determination of the horizontal light path length has been applied to retrieve path-averaged volume mixing ratios. An excellent agreement between mixing ratios determined from NO2 retrievals in the UV and visible parts of the spectrum has been found, showing the validity of the approach. Obtained mixing ratios of NO2 and SO2 are compared to co-located in situ measurements showing good correlation on average but also a systematic underestimation by the MAX-DOAS O4 scaling approach. Comparing data before and after the introduction of stricter fuel sulfur content limits (from 1 to 0.1 %) on 1 January 2015 in the North Sea Emission Control Area (ECA), a significant reduction in SO2 levels is observed. For situations with wind from the open North Sea, where ships are the only local source of air pollution, the average mixing ratio of SO2 decreased by a factor of 8, while for NO2 in the whole time series from 2013 to 2016, no significant change in emissions was observed. More than 2000 individual ship emission plumes have been identified in the data and analyzed for the emission ratio of SO2 to NO2, yielding an average ratio of 0.3 for the years 2013/2014 and decreasing significantly, presumably due to lower fuel sulfur content, in 2015/2016. By sorting measurements according to the prevailing wind direction and selecting two angular reference sectors representative for wind from the open North Sea and coast excluding data with mixed air mass origin, relative contributions of ships and land-based sources to air pollution levels in the German Bight have been estimated to be around 40 % : 60 % for NO2 as well as SO2 in 2013/2014, dropping to 14 % : 86 % for SO2 in 2015/2016.

2017 ◽  
Author(s):  
André Seyler ◽  
Folkard Wittrock ◽  
Lisa Kattner ◽  
Barbara Mathieu-Üffing ◽  
Enno Peters ◽  
...  

Abstract. A three-year time series of ground-based MAX-DOAS measurements of NO2 and SO2 on the island Neuwerk has been analyzed for contributions from shipping emissions. The island is located in the German Bight, close to the main shipping lane into the river Elbe towards the harbor of Hamburg. Measurements of individual ship plumes as well as of background pollution are possible from this location, which is a few kilometers from the shipping lane. A simple approach using the column amounts of the oxygen molecule dimer or collision complex, O4, for the determination of the horizontal light path length has been applied to retrieve path-averaged volume mixing ratios. An excellent agreement between mixing ratios retrieved from NO2 retrievals in the UV and visible parts of the spectrum has been found, showing the validity of the approach. Obtained mixing ratios of NO2 and SO2 are compared to co-located in-situ measurements showing good correlation on average with good agreement for well-mixed background pollution but systematic underestimation of plume concentrations by the MAX-DOAS O4 approach. Comparing data before and after the introduction of stricter fuel sulfur content limits (from 1 % to 0.1 %) on 1 January 2015 in the North Sea emission control area (ECA), a signifcant reduction in SO2 levels has been observed. For situations with wind from the open North Sea, where ships are the only local source of air pollution, the average mixing ratio of SO2 decreased by a factor of eight, while for NO2 in the whole time series from 2013 till 2016 no signifcant change in emissions has been observed. More than 2000 individual ship emission plumes have been identifed in the data and analyzed for the emission ratio of SO2 to NO2, yielding an average ratio of 0.3 for the years 2013/2014, decreasing signifcantly presumably due to lower fuel sulfur content in 2015/2016. By sorting measurements according to the prevailing wind direction and selecting two angular reference sectors representative for wind from open North Sea and coast excluding data with mixed air mass origin, relative contributions of ships and land-based sources to air pollution levels in the German Bight have been estimated to be around 40 % : 60% for NO2 as well as SO2 in 2013/2014, dropping to 14 % : 86 % for SO2 in 2015/2016.


2020 ◽  
Author(s):  
Stefan Schmitt ◽  
Denis Pöhler ◽  
Andreas Weigelt ◽  
Folkard Wittrock ◽  
André Seyler ◽  
...  

<p>In contrast to land-based sources of air pollution, which have been regulated and reduced since several decades, NO<sub>x</sub> and SO<sub>x</sub> emissions from ships were only recently identified as significant sources of air pollution. As one consequence the sulphur content of ship fuel used within the so-called Sulphur Emission Control Areas (SECA) was recently regulated to a maximum of 0.1% (m/m) (MARPOL Annex VI). Therefore, especially monitoring the emission of sulphur compounds is of particular interest.</p><p>Within a 6-week measurement campaign in July and August of 2016, ship emissions were measured at the river Elbe in Germany, near Hamburg using the Long Path (LP)-DOAS technique. The measurements were carried out within the framework of the project MeSMarT (MEasurements of Shipping emissions in the MARine Troposphere), which investigates the influence of ship emissions on chemical processes in the atmosphere. Currently, monitoring of ship emission plumes is typically achieved by a combination of in situ trace gas monitors and meteorological sensors. In contrast to that the LP-DOAS technique is capable of simultaneously measuring signatures of multiple trace gases along an absorption path across a well-frequented waterway close to the ship exhaust-pipes and thus directly in the emission plume at a time resolution of a few seconds.</p><p>For our study, a LP-DOAS instrument was set up side by side to an in situ MeSMarT measurement station at the river Elbe at Wedel (15 km downriver of Hamburg harbour) where NO<sub>2</sub> and SO<sub>2</sub> emission signatures of a total of 5037 ship passes (of 1044 individual ships) were monitored. While the in situ method detected 16% of the ships, the LP-DOAS was able to assign emission plumes to 41% of all passing ships. With meteorology mainly limiting the in situ detection yield, the major limitation for the LP-DOAS was found to be due to the high traffic density and thus the difficulty to unambiguously assign recorded plumes to particular vessels, rather than to the sensitivity to the emission plume itself.</p><p>Based on the results of this feasibility study, we present a newly designed LP-DOAS system fulfilling the requirements for operational ship emission monitoring (robust mechanical setup, broad-band long-lifetime light source, compact sealed housing, automized alignment and data acquisition). This new system is now operated continuously to measure the ship emissions on the river Elbe.</p>


2010 ◽  
Vol 10 (2) ◽  
pp. 171-179 ◽  
Author(s):  
T. Wahl ◽  
J. Jensen ◽  
T. Frank

Abstract. In this paper, a methodology to analyse observed sea level rise (SLR) in the German Bight, the shallow south-eastern part of the North Sea, is presented. The paper focuses on the description of the methods used to generate and analyse mean sea level (MSL) time series. Parametric fitting approaches as well as non-parametric data adaptive filters, such as Singular System Analysis (SSA) are applied. For padding non-stationary sea level time series, an advanced approach named Monte-Carlo autoregressive padding (MCAP) is introduced. This approach allows the specification of uncertainties of the behaviour of smoothed time series near the boundaries. As an example, the paper includes the results from analysing the sea level records of the Cuxhaven tide gauge and the Heligoland tide gauge, both located in the south-eastern North Sea. For comparison, the results from analysing a worldwide sea level reconstruction are also presented. The results for the North Sea point to a weak negative acceleration of SLR since 1844 with a strong positive acceleration at the end of the 19th century, to a period of almost no SLR around the 1970s with subsequent positive acceleration and to high recent rates.


2011 ◽  
Vol 1 (32) ◽  
pp. 27
Author(s):  
Juergen Jensen ◽  
Thomas Wahl ◽  
Torsten Frank

This contribution focuses on presenting the results from analysing mean sea level changes in the German Bight, the south-eastern part of the North Sea. Data sets from 13 tide gauges covering the entire German North Sea coastline and the period from 1843 to 2008 have been used to estimate high quality mean sea level time series. The overall results from nonlinear smoothing and linear trend estimations for different time spans are presented. Time series from single tide gauges are analysed as well as different ‘virtual station’ time series. An accelerated sea level rise in the German Bight is detected for a period at the end of the 19th century and for another one covering the last decades. In addition, different patterns of sea level change are found in the German Bight compared to global patterns, highlighting the urgent need to derive reliable regional sea level projections to be considered in coastal planning strategies.


2019 ◽  
Vol 625 ◽  
pp. 41-52 ◽  
Author(s):  
D Martínez-Alarcón ◽  
R Saborowski ◽  
E Melis ◽  
W Hagen

2005 ◽  
Vol 39 (12) ◽  
pp. 2261-2273 ◽  
Author(s):  
Pentti Paatero ◽  
Pasi Aalto ◽  
Sally Picciotto ◽  
Tom Bellander ◽  
Gemma Castaño ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 892
Author(s):  
Xiaomei Li ◽  
Pinhua Xie ◽  
Ang Li ◽  
Jin Xu ◽  
Zhaokun Hu ◽  
...  

This paper studied the method for converting the aerosol extinction to the mass concentration of particulate matter (PM) and obtained the spatio-temporal distribution and transportation of aerosol, nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) based on multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations in Dalian (38.85°N, 121.36°E), Qingdao (36.35°N, 120.69°E), and Shanghai (31.60°N, 121.80°E) from 2019 to 2020. The PM2.5 measured by the in situ instrument and the PM2.5 simulated by the conversion formula showed a good correlation. The correlation coefficients R were 0.93 (Dalian), 0.90 (Qingdao), and 0.88 (Shanghai). A regular seasonality of the three trace gases is found, but not for aerosols. Considerable amplitudes in the weekly cycles were determined for NO2 and aerosols, but not for SO2 and HCHO. The aerosol profiles were nearly Gaussian, and the shapes of the trace gas profiles were nearly exponential, except for SO2 in Shanghai and HCHO in Qingdao. PM2.5 presented the largest transport flux, followed by NO2 and SO2. The main transport flux was the output flux from inland to sea in spring and winter. The MAX-DOAS and the Copernicus Atmosphere Monitoring Service (CAMS) models’ results were compared. The overestimation of NO2 and SO2 by CAMS is due to its overestimation of near-surface gas volume mixing ratios.


2005 ◽  
Vol 5 (11) ◽  
pp. 2927-2934 ◽  
Author(s):  
L. J. Carpenter ◽  
D. J. Wevill ◽  
S. O'Doherty ◽  
G. Spain ◽  
P. G. Simmonds

Abstract. In situ atmospheric observations of bromoform (CHBr3) made over a 2.5 year period at Mace Head, Ireland from May 2001- Dec 2003, including during the NAMBLEX (North Atlantic Marine Boundary Layer Experiment) campaign, show broad maxima from spring until autumn and winter minima, with mixing ratios of 5.3+1.0 pptv (mid March - mid October) and 1.8+0.8 pptv (December-February). This indicates that, unlike CHCl3, which has a summer minimum and winter maximum at Mace Head, local biological sources of CHBr3 have a greater influence on the atmospheric data than photochemical decay during long-range transport. The emission sources are predominantly macroalgal, but we find evidence for a small terrestrial flux from peatland ecosystems, which so far has not been accounted for in the CHBr3 budget. Sharp increases in CHCl3 and CHBr3 concentrations and decreases in O3 concentrations occurred at night when the wind direction switched from an ocean- to a land-based sector (land breeze) and the wind speed dropped to below 5 ms-1. These observations infer a shallow atmospheric boundary layer with increased O3 deposition and concentration of local emissions of both CHCl3 and CHBr3. The ratio of ΔCHCl3/ΔCHBr3 varied strongly according to the prevailing wind direction; from 0.60+0.15 in south-easterly (100-170° and northerly (340-20°) air to 2.5+0.4 in north-easterly (40-70°) air. Of these land-sectors, the south-easterly air masses are likely to be strongly influenced by macroalgal beds along the coast and the emission ratios probably reflect those from seaweeds in addition to land sources. The north-easterly airmasses however had an immediate fetch inland, which locally is comprised of coastal peatland ecosystems (peat bogs and coastal conifer plantations), previously identified as being strong sources of atmospheric CHCl3 under these conditions. Although we cannot entirely rule out other local land or coastal sources, our observations also suggest peatland ecosystem emissions of CHBr3. We use correlations between CHCl3 and CHBr3 during the north-easterly land breeze events in conjunction with previous estimates of local wetland CHCl3 release to tentatively deduce a global wetland CHBr3 source of 20.4(0.4-948) Gg yr-1, which is approximately 7% of the total global source.


Sign in / Sign up

Export Citation Format

Share Document