scholarly journals Zebrafish wnt11: pattern and regulation of the expression by the yolk cell and No tail activity

1998 ◽  
Vol 71 (1-2) ◽  
pp. 165-176 ◽  
Author(s):  
Ryosuke Makita ◽  
Toshiro Mizuno ◽  
Sumito Koshida ◽  
Atsushi Kuroiwa ◽  
Hiroyuki Takeda
Keyword(s):  
1955 ◽  
Vol 9 (3) ◽  
pp. 568-571 ◽  
Author(s):  
T. Takami
Keyword(s):  

Development ◽  
2002 ◽  
Vol 129 (14) ◽  
pp. 3311-3323 ◽  
Author(s):  
Sharon L. Amacher ◽  
Bruce W. Draper ◽  
Brian R. Summers ◽  
Charles B. Kimmel

T-box genes encode transcriptional regulators that control many aspects of embryonic development. Here, we demonstrate that the mesodermally expressed zebrafish spadetail (spt)/VegT and no tail (ntl)/Brachyury T-box genes are semi-redundantly and cell-autonomously required for formation of all trunk and tail mesoderm. Despite the lack of posterior mesoderm in spt–;ntl– embryos, dorsal-ventral neural tube patterning is relatively normal, with the notable exception that posterior medial floor plate is completely absent. This contrasts sharply with observations in single mutants, as mutations singly in ntl or spt enhance posterior medial floor plate development. We find that ntl function is required to repress medial floor plate and promote notochord fate in cells of the wild-type notochord domain and that spt and ntl together are required non cell-autonomously for medial floor plate formation, suggesting that an inducing signal present in wild-type mesoderm is lacking in spt–;ntl– embryos.


Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3067-3078 ◽  
Author(s):  
A. Rodaway ◽  
H. Takeda ◽  
S. Koshida ◽  
J. Broadbent ◽  
B. Price ◽  
...  

The endoderm forms the gut and associated organs, and develops from a layer of cells which emerges during gastrula stages in the vertebrate embryo. In comparison to mesoderm and ectoderm, little is known about the signals which induce the endoderm. The origin of the endoderm is intimately linked with that of mesoderm, both by their position in the embryo, and by the molecules that can induce them. We characterised a gene, zebrafish gata5, which is expressed in the endoderm from blastula stages and show that its transcription is induced by signals originating from the yolk cell. These signals also induce the mesoderm-expressed transcription factor no tail (ntl), whose initial expression coincides with gata5 in the cells closest to the blastoderm margin, then spreads to encompass the germ ring. We have characterised the induction of these genes and show that ectopic expression of activin induces gata5 and ntl in a pattern which mimics the endogenous expression, while expression of a dominant negative activin receptor abolishes ntl and gata5 expression. Injection of RNA encoding a constitutively active activin receptor leads to ectopic expression of gata5 and ntl. gata5 is activated cell-autonomously, whereas ntl is induced in cells distant from those which have received the RNA, showing that although expression of both genes is induced by a TGF-beta signal, expression of ntl then spreads by a relay mechanism. Expression of a fibroblast growth factor (eFGF) or a dominant negatively acting FGF receptor shows that ntl but not gata5 is regulated by FGF signalling, implying that this may be the relay signal leading to the spread of ntl expression. In embryos lacking both squint and cyclops, members of the nodal group of TGF-beta related molecules, gata5 expression in the blastoderm is abolished, making these factors primary candidates for the endogenous TGF-beta signal inducing gata5.


2000 ◽  
Vol 50 (1) ◽  
pp. 37-51 ◽  
Author(s):  
Geertruy Te Kronnie ◽  
Henri W.J. Stroband ◽  
Henk Schipper ◽  
Johannis Samallo
Keyword(s):  

1945 ◽  
Vol 23e (6) ◽  
pp. 235-243 ◽  
Author(s):  
Ralph F. Shaner

A description is given of a human embryo with two to three pairs of somites and about 25 days old. In general the embryo tallies with the few other human embryos of the same stage hitherto described. It has a well developed head fold, but no tail fold. Its neural groove is everywhere open. There is a minute neurenteric canal, a long primitive streak, and long cloacal membrane. The last is degenerate in its caudal part. The optic primordium is faint, but a clear otic placode is present. Between the two extends a neural crest, the earliest on record. A slight fore-gut is present, ending in an oral membrane. There is a long tubular allantois. The notochord is strap-like, issuing from a Henson's node and ending in a prechordal plate. Two well developed pairs of somites appear with the beginning of a third. The mesoderm is split to contain two body cavities, which join beneath the fore-gut. The yolk sac is partly covered with blood islands. There are two definite umbilical arteries and traces of umbilical veins. Solid strands of angioblastic tissue beneath the fore-gut are the only signs of a heart. Scattered indications of body vessels also occur.


Development ◽  
2010 ◽  
Vol 137 (7) ◽  
pp. 1127-1135 ◽  
Author(s):  
S. A. Harvey ◽  
S. Tumpel ◽  
J. Dubrulle ◽  
A. F. Schier ◽  
J. C. Smith
Keyword(s):  

2008 ◽  
Vol 28 (10) ◽  
pp. 3236-3244 ◽  
Author(s):  
Akinori Kawamura ◽  
Sumito Koshida ◽  
Shinji Takada

ABSTRACT The T-box family of transcription factors, defined by a conserved DNA binding domain called the T-box, regulate various aspects of embryogenesis by activating and/or repressing downstream genes. In spite of the biological significance of the T-box proteins, how they regulate transcription remains to be elucidated. Here we show that the Groucho/TLE-associated protein Ripply converts T-box proteins from activators to repressors. In cultured cells, zebrafish Ripply1, an essential component in somite segmentation, and its structural relatives, Ripply2 and -3, suppress the transcriptional activation mediated by the T-box protein Tbx24, which is coexpressed with ripply1 during segmentation. Ripply1 associates with Tbx24 and converts it to a repressor. Ripply1 also antagonizes the transcriptional activation of another T-box protein, No tail (Ntl), the zebrafish ortholog of Brachyury. Furthermore, injection of a high dosage of ripply1 mRNA into zebrafish eggs causes defective development of the posterior trunk, similar to the phenotype observed in homozygous mutants of ntl. A mutant form of Ripply1 defective in association with Tbx24 also lacks activity in zebrafish embryos. These results indicate that the intrinsic transcriptional property of T-box proteins is controlled by Ripply family proteins, which act as specific adaptors that recruit the global corepressor Groucho/TLE to T-box proteins.


Sign in / Sign up

Export Citation Format

Share Document