Effect of film thickness on the stress and adhesion of diamond-like carbon coatings

2002 ◽  
Vol 11 (9) ◽  
pp. 1643-1647 ◽  
Author(s):  
D Sheeja ◽  
B.K Tay ◽  
K.W Leong ◽  
C.H Lee
Author(s):  
Shuhui Cui ◽  
Le Gu ◽  
Michel Fillon ◽  
Chuanwei Zhang

A thermohydrodynamic model was used to study the influence of partial composite coatings on the behavior of plain journal bearings, considering solid elastic deformations and wall slip occurring at the oil film–polytetrafluoroethylene coating interface, and heat conduction between film, coating, interlayer and basement. The purpose is to design partial polytetrafluoroethylene coating to obtain improved bearing behavior based on analyzing the maximum temperature and minimum film thickness in different coating positions (or slip zones). The influences of coating thickness and coating materials (polytetrafluoroethylene, graphite and diamond-like carbon coatings) at different coating positions are also presented. Results show that polytetrafluoroethylene coatings that are completely located in the film convergent region have a small influence on thermal behavior in both nonslip and slip cases. Without slip, a full polytetrafluoroethylene coating can increase the maximum temperature; however, wall slip occurring on a full polytetrafluoroethylene coating surface is helpful in decreasing the maximum temperature when accompanied by a lower minimum film thickness. A thicker polytetrafluoroethylene coating causes bearing seizures more readily. Unlike polytetrafluoroethylene, graphite and diamond-like carbon coatings improve the thermal behavior.


Author(s):  
Gabriel Morand ◽  
Pascale Chevallier ◽  
Linda Bonilla‐Gameros ◽  
Stéphane Turgeon ◽  
Maxime Cloutier ◽  
...  

1994 ◽  
Vol 72 (3) ◽  
pp. 120-123 ◽  
Author(s):  
I.R. McColl ◽  
J.V. Wood ◽  
D.M. Grant

2020 ◽  
Vol 10 (1) ◽  
pp. 688-698
Author(s):  
Joanna Kowalczyk ◽  
Krystian Milewski ◽  
Monika Madej ◽  
Dariusz Ozimina

AbstractThe purpose of the study was to evaluate the properties of diamond-like carbon DLC coatings with ionic liquids and cutting fluid containing zinc aspartate used as lubricants. The DLC coatings (a–C:H) were deposited onto the 100Cr6 steel substrate by physical vapour deposition PVD. The surface morphology testing, cross section and chemical composition analyses of the DLC coatings were performed using the scanning electron microscope, equipped with an EDS microanalyzer. Surface geometry measurements prior to and after tribological tests were performed on a confocal microscope with interferometry. The tribological tests were carried out on an Anton Paar TRB3 tribometer under technically dry friction and lubricated conditions with an ionic liquid, trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide and 1–butyl– 3–methylimidazolium bis (trifluoromethylsulfonyl) imide and cutting fluid with zinc aspartate. The results show that DLC coatings and ionic liquids can significantly reduce resistance to motion.


Sign in / Sign up

Export Citation Format

Share Document