magnetic resonance imaging and MAS spectroscopy of trimethylborate-treated radiata pine wood

1999 ◽  
Vol 15 (1) ◽  
pp. 69-72 ◽  
Author(s):  
Roger Meder ◽  
Robert A Franich ◽  
Paul T Callaghan
Holzforschung ◽  
2015 ◽  
Vol 69 (7) ◽  
pp. 899-907 ◽  
Author(s):  
Muhammad Asadullah Javed ◽  
Päivi M. Kekkonen ◽  
Susanna Ahola ◽  
Ville-Veikko Telkki

AbstractThermal modification is an environmentally friendly process that enhances the lifetime and properties of timber. In this work, the absorption of water in pine wood (Pinus sylvestris) samples, which were modified by the ThermoWood process, was studied by magnetic resonance imaging (MRI) and gravimetric analysis. The modification temperatures were varied between 180°C and 240°C. The data shows that the modification at 240°C and at 230°C decreases the water absorption rate significantly and slightly, respectively, while lower temperatures do not have a noticeable effect. MR images reveal that free water absorption in latewood (LW) is faster than in earlywood (EW), but in the saturated sample, the amount of water is greater in EW. Individual resin channels can be resolved in the high-resolution images, especially in LW regions of the modified samples, and their density was estimated to be (2.7±0.6) mm-2. TheT2relaxation time of water is longer in the modified wood than in the reference samples due to the removal of resin and extractives in the course of the modification process.


Author(s):  
Alan P. Koretsky ◽  
Afonso Costa e Silva ◽  
Yi-Jen Lin

Magnetic resonance imaging (MRI) has become established as an important imaging modality for the clinical management of disease. This is primarily due to the great tissue contrast inherent in magnetic resonance images of normal and diseased organs. Due to the wide availability of high field magnets and the ability to generate large and rapidly switched magnetic field gradients there is growing interest in applying high resolution MRI to obtain microscopic information. This symposium on MRI microscopy highlights new developments that are leading to increased resolution. The application of high resolution MRI to significant problems in developmental biology and cancer biology will illustrate the potential of these techniques.In combination with a growing interest in obtaining high resolution MRI there is also a growing interest in obtaining functional information from MRI. The great success of MRI in clinical applications is due to the inherent contrast obtained from different tissues leading to anatomical information.


1998 ◽  
Vol 41 (3) ◽  
pp. 538-548 ◽  
Author(s):  
Sean C. Huckins ◽  
Christopher W. Turner ◽  
Karen A. Doherty ◽  
Michael M. Fonte ◽  
Nikolaus M. Szeverenyi

Functional Magnetic Resonance Imaging (fMRI) holds exciting potential as a research and clinical tool for exploring the human auditory system. This noninvasive technique allows the measurement of discrete changes in cerebral cortical blood flow in response to sensory stimuli, allowing determination of precise neuroanatomical locations of the underlying brain parenchymal activity. Application of fMRI in auditory research, however, has been limited. One problem is that fMRI utilizing echo-planar imaging technology (EPI) generates intense noise that could potentially affect the results of auditory experiments. Also, issues relating to the reliability of fMRI for listeners with normal hearing need to be resolved before this technique can be used to study listeners with hearing loss. This preliminary study examines the feasibility of using fMRI in auditory research by performing a simple set of experiments to test the reliability of scanning parameters that use a high resolution and high signal-to-noise ratio unlike that presently reported in the literature. We used consonant-vowel (CV) speech stimuli to investigate whether or not we could observe reproducible and consistent changes in cortical blood flow in listeners during a single scanning session, across more than one scanning session, and in more than one listener. In addition, we wanted to determine if there were differences between CV speech and nonspeech complex stimuli across listeners. Our study shows reproducibility within and across listeners for CV speech stimuli. Results were reproducible for CV speech stimuli within fMRI scanning sessions for 5 out of 9 listeners and were reproducible for 6 out of 8 listeners across fMRI scanning sessions. Results of nonspeech complex stimuli across listeners showed activity in 4 out of 9 individuals tested.


Sign in / Sign up

Export Citation Format

Share Document