4 In vivo glucose transport in human skeletal muscle: tools, problems and perspectives

1993 ◽  
Vol 7 (4) ◽  
pp. 929-960 ◽  
Author(s):  
Riccardo C. Bonadonna ◽  
Maria Pia Saccomani ◽  
Claudio Cobelli
Diabetes ◽  
1993 ◽  
Vol 42 (1) ◽  
pp. 191-198 ◽  
Author(s):  
R. C. Bonadonna ◽  
M. P. Saccomani ◽  
L. Seely ◽  
K. S. Zych ◽  
E. Ferrannini ◽  
...  

Diabetes ◽  
1993 ◽  
Vol 42 (1) ◽  
pp. 191-198 ◽  
Author(s):  
R. C. Bonadonna ◽  
M. P. Saccomani ◽  
L. Seely ◽  
K. S. Zych ◽  
E. Ferrannini ◽  
...  

Diabetes ◽  
1995 ◽  
Vol 44 (6) ◽  
pp. 695-698 ◽  
Author(s):  
J. L. Azevedo ◽  
J. O. Carey ◽  
W. J. Pories ◽  
P. G. Morris ◽  
G. L. Dohm

2015 ◽  
Vol 118 (8) ◽  
pp. 971-979 ◽  
Author(s):  
Andreas Buch Møller ◽  
Mikkel Holm Vendelbo ◽  
Britt Christensen ◽  
Berthil Forrest Clasen ◽  
Ann Mosegaard Bak ◽  
...  

Data from transgenic animal models suggest that exercise-induced autophagy is critical for adaptation to physical training, and that Unc-51 like kinase-1 (ULK1) serves as an important regulator of autophagy. Phosphorylation of ULK1 at Ser555 stimulates autophagy, whereas phosphorylation at Ser757 is inhibitory. To determine whether exercise regulates ULK1 phosphorylation in humans in vivo in a nutrient-dependent manner, we examined skeletal muscle biopsies from healthy humans after 1-h cycling exercise at 50% maximal O2 uptake on two occasions: 1) during a 36-h fast, and 2) during continuous glucose infusion at 0.2 kg/h. Physical exercise increased ULK1 phosphorylation at Ser555 and decreased lipidation of light chain 3B. ULK1 phosphorylation at Ser555 correlated positively with AMP-activated protein kinase-α Thr172 phosphorylation and negatively with light chain 3B lipidation. ULK1 phosphorylation at Ser757 was not affected by exercise. Fasting increased ULK1 and p62 protein expression, but did not affect exercise-induced ULK1 phosphorylation. These data demonstrate that autophagy signaling is activated in human skeletal muscle after 60 min of exercise, independently of nutritional status, and suggest that initiation of autophagy constitutes an important physiological response to exercise in humans.


FEBS Letters ◽  
1992 ◽  
Vol 307 (3) ◽  
pp. 379-382 ◽  
Author(s):  
Juleen R. Zierath ◽  
Peter Bang ◽  
Dana Galuska ◽  
Kerstin Hall ◽  
Harriet Wallberg-Henriksson

2021 ◽  
Vol 118 (37) ◽  
pp. e2021013118 ◽  
Author(s):  
Sebastian Mathes ◽  
Alexandra Fahrner ◽  
Umesh Ghoshdastider ◽  
Hannes A. Rüdiger ◽  
Michael Leunig ◽  
...  

Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus–mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2–dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.


1999 ◽  
Vol 58 (4) ◽  
pp. 919-923 ◽  
Author(s):  
Jan Henriksson

Techniques in human skeletal muscle research are by necessity predominantly 'descriptive'.Microdialysis has raised high expectations that it could meet the demand for a method that allows 'mechanistic' investigations to be performed in human skeletal muscle. In the present review, some views are given on how well the initial expectations on the use of the microdialysis technique in skeletal muscle have been fulfilled, and the areas in which additional work is needed in order to validate microdialysis as an important metabolic technique in this tissue. The microdialysis catheter has been equated to an artificial blood vessel, which is introduced into the tissue. By means of this 'vessel' the concentrations of compounds in the interstitial space can be monitored. The concentration of substances in the collected samples is dependent on the rate of perfusate flow. When perfusate flow is slow enough to allow complete equilibration between interstitial and perfusate fluids, the concentration in the perfusate is maximal and identical to the interstitial concentration. Microdialysis data may be influenced by changes in blood flow, especially in instances where the tissue diffusivity limits the recovery in vivo, i.e. when recovery in vitro is 100 %, whereas the recovery in vivo is less than 100 %. Microdialysis data indicate that a significant arterial-interstitial glucose concentration gradient exists in skeletal muscle but not in adipose tissue at rest. While the concentrations of glucose and lactate in the dialysate from skeletal muscle are close to the expected values, the glycerol values obtained for muscle are still puzzling. Ethanol added to the perfusate will be cleared by the tissue at a rate that is determined by the nutritive blood flow (the microdialysis ethanol technique). It is concluded that microdialysis of skeletal muscle has become an important technique for mechanistic studies in human metabolism and nutrition.


1997 ◽  
Vol 272 (1) ◽  
pp. E7-E17 ◽  
Author(s):  
T. Ploug ◽  
X. Han ◽  
L. N. Petersen ◽  
H. Galbo

Cholera toxin (CTX) and pertussis toxin (PTX) were examined for their ability to inhibit glucose transport in perfused skeletal muscle. Twenty-five hours after an intravenous injection of CTX, basal transport was decreased approximately 30%, and insulin- and contraction-stimulated transport was reduced at least 86 and 49%, respectively, in both the soleus and red and white gastrocnemius muscles. In contrast, PTX treatment was much less efficient. Impairment of glucose transport appeared to develop 10-15 h after CTX administration, which coincided with development of hyperglycemia despite hyperinsulinimia, increased plasma free fatty acid levels, increased adenosine 3',5'-cyclic monophosphate (cAMP) concentrations in muscle, but no difference in plasma catecholamines. Twenty-five hours after CTX treatment, GLUT-4 protein in both soleus and red gastrocnemius muscles was decreased, whereas no change in GLUT-1 protein content was found. In contrast, GLUT-4 mRNA was unchanged, but transcripts for GLUT-1 were increased > or = 150% in all three muscles from CTX-treated rats. The findings suggest that CTX via increased cAMP impairs basal as well as insulin- and contraction-stimulated muscle glucose transport, at least in part from a decrease in intramuscular GLUT-4 protein.


1979 ◽  
Vol 101 (1) ◽  
pp. 28-37 ◽  
Author(s):  
G. I. Zahalak ◽  
S. J. Heyman

This paper describes an investigation of the frequency-response characteristics of active human skeletal muscle in vivo over the frequency range 1 Hz to 15 Hz. The applied force, forearm position, and surface electromyograms (from biceps, triceps, and brachioradialis) were recorded simultaneously in four normal adult male subjects for small oscillations of the forearm about a mean position of 90 deg flexion. Two modes of oscillatory behavior are discussed: externally forced oscillations under constant muscle force and voluntary oscillations against an elastic resistance. The observed amplitude and phase relations are presented herein and are compared to the response predicted by a simple model for neuromuscular dynamics. It appears that the small amplitude frequency response of normal skeletal muscle in vivo can be represented by a second order model. The main muscle parameters of this model are a muscular stiffness K, two time constants τ1 and τ2 associated with contraction dynamics, and a time delay τ: typical values of these parameters at moderate contraction levels (approximately 20 percent of maximum voluntary effort) are K = 100 N · m/rad, τ1 and τ2 = 50 ms, and τ = 10 ms. Reflex feedback under forced-oscillation conditions was also examined and may be characterized by a gain parameter (ΔE/Δθ), the ratio of the surface EMG amplitude to the angular displacement of the forearm, and the phase by which the EMG leads muscle stretch. The reflex EMG is observed to lead muscle stretch at all frequencies between 1 Hz and 15 Hz. The muscle stiffness K and the reflex gain parameter (ΔE/Δθ) are approximately proportional to the average force of contraction.


1995 ◽  
Vol 33 (1) ◽  
pp. 134-139 ◽  
Author(s):  
Ravinder Reddy ◽  
Lizann Bolinger ◽  
Meir Shinnar ◽  
Elizabeth Noyszewski ◽  
John S. Leigh

Sign in / Sign up

Export Citation Format

Share Document