transgenic animal models
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 21)

H-INDEX

27
(FIVE YEARS 3)

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3371
Author(s):  
Evgenia Gurevich ◽  
Yael Segev ◽  
Daniel Landau

Growth hormone (GH) exerts multiple effects on different organs including the kidneys, either directly or via its main mediator, insulin-like-growth factor-1 (IGF-1). The GH/IGF1 system plays a key role in normal kidney development, glomerular hemodynamic regulation, as well as tubular water, sodium, phosphate, and calcium handling. Transgenic animal models demonstrated that GH excess (and not IGF1) may lead to hyperfiltration, albuminuria, and glomerulosclerosis. GH and IGF-1 play a significant role in the early development of diabetic nephropathy, as well as in compensatory kidney hypertrophy after unilateral nephrectomy. Chronic kidney disease (CKD) and its complications in children are associated with alterations in the GH/IGF1 axis, including growth retardation, related to a GH-resistant state, attributed to impaired kidney postreceptor GH-signaling and chronic inflammation. This may explain the safety of prolonged rhGH-treatment of short stature in CKD.


2021 ◽  
Vol 22 (22) ◽  
pp. 12439
Author(s):  
Hideyuki Hara ◽  
Suehiro Sakaguchi

Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is an underlying pathogenic mechanism in prion diseases. The diseases manifest as sporadic, hereditary, and acquired disorders. Etiological mechanisms driving the conversion of PrPC into PrPSc are unknown in sporadic prion diseases, while prion infection and specific mutations in the PrP gene are known to cause the conversion of PrPC into PrPSc in acquired and hereditary prion diseases, respectively. We recently reported that a neurotropic strain of influenza A virus (IAV) induced the conversion of PrPC into PrPSc as well as formation of infectious prions in mouse neuroblastoma cells after infection, suggesting the causative role of the neuronal infection of IAV in sporadic prion diseases. Here, we discuss the conversion mechanism of PrPC into PrPSc in different types of prion diseases, by presenting our findings of the IAV infection-induced conversion of PrPC into PrPSc and by reviewing the so far reported transgenic animal models of hereditary prion diseases and the reverse genetic studies, which have revealed the structure-function relationship for PrPC to convert into PrPSc after prion infection.


2021 ◽  
Vol 22 (11) ◽  
pp. 6132
Author(s):  
Aiko Robert ◽  
Michael Schöll ◽  
Thomas Vogels

Tauopathies are a heterogeneous class of neurodegenerative diseases characterized by intracellular inclusions of aggregated tau proteins. Tau aggregates in different tauopathies have distinct structural features and can be found in different cell types. Transgenic animal models overexpressing human tau have been used for over two decades in the research of tau pathology. However, these models poorly recapitulate the heterogeneity of tauopathies found in human brains. Recent findings demonstrate that injection of purified tau aggregates from the brains of human tauopathy patients recapitulates both the structural features and cell-type specificity of the tau pathology of the donor tauopathy. These models may therefore have unique translational value in the study of functional consequences of tau pathology, tau-based diagnostics, and tau targeting therapeutics. This review provides an update of the literature relating to seeding-based tauopathy and their potential applications.


2021 ◽  
Author(s):  
Fadian Ding ◽  
Feng Gao ◽  
Wei Lian ◽  
Shirong Huang ◽  
Hanjun Wang ◽  
...  

Abstract Background: DDIT4 is a tumor metabolism-related protein which is involved in the proliferation and survival of various tumors. However, the function of DDIT4 in the pancreatic cancer is still unknown.Methods: We collected clinical samples of pancreatic cancer and established animal models of pancreatic cancer and DDIT4-HET animal models. We examined the expression of DDIT4 in pancreatic cancer tissues by IHC and WB and the degree of fat infiltration in the pancreas by HE staining and oil-red O staining. What’s more, the Western blot and immunohistochemical methods were applied to test the expression levels of PPAR-γ and CD36. Meanwhile, the apoptosis and proliferation levels were also examined in DDIT4-HET pancreatic cancer model.Results:The expression of DDIT4 is decreased in pancreatic cancer and DDIT4 regulates the development of pancreatic cancer by participating in fat infiltration. The degree of fat infiltration in DDIT4-HET pancreatic cancer tumors is higher than that in wild-type pancreatic cancer tumors. Through transgenic animal models, we found that DDIT4 regulates lipid metabolism in pancreatic cancer by regulating PPAR-γ and its downstream proteins CD36 and ATGL, and DDIT4-mediated lipid metabolism abnormality is involved in the proliferation and apoptosis of pancreatic cancer.Conclusion: The low expression of DDIT4 promotes the proliferation and survival by regulating lipid metabolism in pancreatic cancer cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xin Tong ◽  
Xiaoling Li ◽  
Muhammad Ayaz ◽  
Farhat Ullah ◽  
Abdul Sadiq ◽  
...  

Polygonum hydropiper L. and related species are reported to possess neuroprotective potentials. In an attempt to validate its anti-Alzheimer’s potentials, leaf oils (Ph. Lo) were extensively evaluated in this study against several in vitro and in vivo models of Alzheimer’s disease. The Ph. Lo were tested against pathological targets of Alzheimer’s diseases (ADs). The in vitro and in vivo assays were done for cholinesterase inhibition, anti-radical properties and cognitive assessments using transgenic animal models. In preliminary cholinesterase inhibition assays, Ph. Lo were more active against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS), and hydrogen peroxide (H2O2) radicals. Subsequently, Ph. Lo was evaluated for its effects on special memory, exploratory behavior, and coordination using shallow water maze (SWM), Y-maze, open filed, and balance beam tests. Animal pre-genotyping was done via polymerase chain reaction (PCR) to confirm amyloid precursor protein (APP) transgene, and after completion of drug therapy, brain homogenates from the cortex and hippocampus were evaluated for cholinesterase and free radical studies. In SWM task, disease control animals treated with 10 mg/kg of Ph. Lo for 5 days exhibited significant improvement in cognitive performance indicated by low escape times on 5th day compared with normal animals. In the Y-maze test, transgenic animals showed higher spontaneous alternation behavior than disease control animals and standard control group animals. Ph. Lo therapy has improved the exploratory behavior and declined anxiety behavior in diseased animals as accessed via open field test. Ph. Lo administration significantly augmented the motor and coordination abilities of transgenic animals when compared to other groups of animals and declined AChE, BChE activities as well as free radicals load in the cortex and hippocampus tissues. Based on our finding, it is concluded that Ph. Lo exhibit significant neuroprotective potentials preliminary due to their anti-radicals and cholinesterase inhibitory activities. Ph. Lo need further detailed studies as potential aromatherapy against neurodegenerative disorders.


Author(s):  
Z. Voysey ◽  
S. V. Fazal ◽  
A. S. Lazar ◽  
R. A. Barker

Abstract Introduction Mounting evidence supports the existence of an important feedforward cycle between sleep and neurodegeneration, wherein neurodegenerative diseases cause sleep and circadian abnormalities, which in turn exacerbate and accelerate neurodegeneration. If so, sleep therapies bear important potential to slow progression in these diseases. Findings This cycle is challenging to study, as its bidirectional nature renders cause difficult to disentangle from effect. Likewise, well-controlled intervention studies are often impractical in the setting of established neurodegenerative disease. It is this that makes understanding sleep and circadian abnormalities in Huntington’s disease (HD) important: as a monogenic fully penetrant neurodegenerative condition presenting in midlife, it provides a rare opportunity to study sleep and circadian abnormalities longitudinally, prior to and throughout disease manifestation, and in the absence of confounds rendered by age and comorbidities. It also provides potential to trial sleep therapies at a preclinical or early disease stage. Moreover, its monogenic nature facilitates the development of transgenic animal models through which to run parallel pre-clinical studies. HD, therefore, provides a key model condition through which to gain new insights into the sleep-neurodegeneration interface. Conclusions Here, we begin by summarising contemporary knowledge of sleep abnormalities in HD, and consider how well these parallel those of Alzheimer’s and Parkinson’s as more common neurodegenerative conditions. We then discuss what is currently known of the sleep-neurodegeneration cyclical relationship in HD. We conclude by outlining key directions of current and future investigation by which to advance the sleep-neurodegeneration field via studies in HD.


2020 ◽  
Vol 2 ◽  
Author(s):  
Hirofumi Nishizono ◽  
Ryohei Yasuda ◽  
Tal Laviv

Neurons and glia are highly polarized cells with extensive subcellular structures extending over large distances from their cell bodies. Previous research has revealed elaborate protein signaling complexes localized within intracellular compartments. Thus, exploring the function and the localization of endogenous proteins is vital to understanding the precise molecular mechanisms underlying the synapse, cellular, and circuit function. Recent advances in CRISPR/Cas9-based genome editing techniques have allowed researchers to rapidly develop transgenic animal models and perform single-cell level genome editing in the mammalian brain. Here, we introduce and comprehensively review the latest techniques for genome-editing in whole animals using fertilized eggs and methods for gene editing in specific neuronal populations in the adult or developing mammalian brain. Finally, we describe the advantages and disadvantages of each technique, as well as the challenges that lie ahead to advance the generation of methodologies for genome editing in the brain using the current CRISPR/Cas9 system.


Author(s):  
Peter M. J. Quinn ◽  
Paula I. Moreira ◽  
António Francisco Ambrósio ◽  
C. Henrique Alves

Abstract Mutations in the PTEN-induced kinase 1 (PINK1) and Parkin RBR E3 ubiquitin-protein ligase (PARKIN) genes are associated with familial forms of Parkinson’s disease (PD). PINK1, a protein kinase, and PARKIN, an E3 ubiquitin ligase, control the specific elimination of dysfunctional or superfluous mitochondria, thus fine-tuning mitochondrial network and preserving energy metabolism. PINK1 regulates PARKIN translocation in impaired mitochondria and drives their removal via selective autophagy, a process known as mitophagy. As knowledge obtained using different PINK1 and PARKIN transgenic animal models is being gathered, growing evidence supports the contribution of mitophagy impairment to several human pathologies, including PD and Alzheimer’s diseases (AD). Therefore, therapeutic interventions aiming to modulate PINK1/PARKIN signalling might have the potential to treat these diseases. In this review, we will start by discussing how the interplay of PINK1 and PARKIN signalling helps mediate mitochondrial physiology. We will continue by debating the role of mitochondrial dysfunction in disorders such as amyotrophic lateral sclerosis, Alzheimer’s, Huntington’s and Parkinson’s diseases, as well as eye diseases such as age-related macular degeneration and glaucoma, and the causative factors leading to PINK1/PARKIN-mediated neurodegeneration and neuroinflammation. Finally, we will discuss PINK1/PARKIN gene augmentation possibilities with a particular focus on AD, PD and glaucoma.


Sign in / Sign up

Export Citation Format

Share Document