transgenic animal
Recently Published Documents


TOTAL DOCUMENTS

412
(FIVE YEARS 64)

H-INDEX

42
(FIVE YEARS 5)

2021 ◽  
Vol 12 ◽  
Author(s):  
Giuseppe Caruso ◽  
Margherita Grasso ◽  
Annamaria Fidilio ◽  
Sebastiano Alfio Torrisi ◽  
Nicolò Musso ◽  
...  

Depression is a risk factor for the development of Alzheimer’s disease (AD). A neurobiological and clinical continuum exists between AD and depression, with neuroinflammation and oxidative stress being involved in both diseases. Second-generation antidepressants, in particular selective serotonin reuptake inhibitors (SSRIs), are currently investigated as neuroprotective drugs in AD. By employing a non-transgenic AD model, obtained by intracerebroventricular (i.c.v.) injection of amyloid-β (Aβ) oligomers in 2-month-old C57BL/6 mice, we recently demonstrated that the SSRI fluoxetine (FLX) and the multimodal antidepressant vortioxetine (VTX) reversed the depressive-like phenotype and memory deficits induced by Aβ oligomers rescuing the levels of transforming growth factor-β1 (TGF-β1). Aim of our study was to test FLX and VTX for their ability to prevent oxidative stress in the hippocampus of Aβ-injected mice, a brain area strongly affected in both depression and AD. The long-term intraperitoneal (i.p.) administration of FLX (10 mg/kg) or VTX (5 and 10 mg/kg) for 24 days, starting 7 days before Aβ injection, was able to prevent the over-expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase 2 (Nox2) induced by Aβ oligomers. Antidepressant pre-treatment was also able to rescue the mRNA expression of glutathione peroxidase 1 (Gpx1) antioxidant enzyme. FLX and VTX also prevented Aβ-induced neurodegeneration in mixed neuronal cultures treated with Aβ oligomers. Our data represent the first evidence that the long-term treatment with the antidepressants FLX or VTX can prevent the oxidative stress phenomena related to the cognitive deficits and depressive-like phenotype observed in a non-transgenic animal model of AD.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3371
Author(s):  
Evgenia Gurevich ◽  
Yael Segev ◽  
Daniel Landau

Growth hormone (GH) exerts multiple effects on different organs including the kidneys, either directly or via its main mediator, insulin-like-growth factor-1 (IGF-1). The GH/IGF1 system plays a key role in normal kidney development, glomerular hemodynamic regulation, as well as tubular water, sodium, phosphate, and calcium handling. Transgenic animal models demonstrated that GH excess (and not IGF1) may lead to hyperfiltration, albuminuria, and glomerulosclerosis. GH and IGF-1 play a significant role in the early development of diabetic nephropathy, as well as in compensatory kidney hypertrophy after unilateral nephrectomy. Chronic kidney disease (CKD) and its complications in children are associated with alterations in the GH/IGF1 axis, including growth retardation, related to a GH-resistant state, attributed to impaired kidney postreceptor GH-signaling and chronic inflammation. This may explain the safety of prolonged rhGH-treatment of short stature in CKD.


Oxygen ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 96-120
Author(s):  
Anna Atlante ◽  
Daniela Valenti ◽  
Valentina Latina ◽  
Giuseppina Amadoro

Oxygen free radical burst is a prominent early event in the pathogenesis of Alzheimer’s disease (AD). Posttranslational modifications of Tau protein, primarily hyper-phosphorylation and truncation, are indicated as critical mediators of AD pathology. This finding is confirmed by the high levels of oxidative stress markers and by the increased susceptibility to oxygen radicals found in cultured neurons and in brains from transgenic animal models expressing toxic Tau forms, in concomitance with a dramatic reduction in their viability/survival. Here, we collect the latest progress in research focused on the reciprocal and dynamic interplay between oxygen radicals and pathological Tau, discussing how these harmful species cooperate and/or synergize in the progression of AD. In this context, a better understanding of the role of oxidative stress in determining Tau pathology, and vice versa, primarily could be able to define novel biomarkers of early stages of human tauopathies, including AD, and then to develop therapeutic strategies aimed at attenuating, halting, or reversing disease progression.


2021 ◽  
Vol 22 (22) ◽  
pp. 12439
Author(s):  
Hideyuki Hara ◽  
Suehiro Sakaguchi

Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is an underlying pathogenic mechanism in prion diseases. The diseases manifest as sporadic, hereditary, and acquired disorders. Etiological mechanisms driving the conversion of PrPC into PrPSc are unknown in sporadic prion diseases, while prion infection and specific mutations in the PrP gene are known to cause the conversion of PrPC into PrPSc in acquired and hereditary prion diseases, respectively. We recently reported that a neurotropic strain of influenza A virus (IAV) induced the conversion of PrPC into PrPSc as well as formation of infectious prions in mouse neuroblastoma cells after infection, suggesting the causative role of the neuronal infection of IAV in sporadic prion diseases. Here, we discuss the conversion mechanism of PrPC into PrPSc in different types of prion diseases, by presenting our findings of the IAV infection-induced conversion of PrPC into PrPSc and by reviewing the so far reported transgenic animal models of hereditary prion diseases and the reverse genetic studies, which have revealed the structure-function relationship for PrPC to convert into PrPSc after prion infection.


2021 ◽  
Author(s):  
Lakshmini Balachandar ◽  
Diana Borrego ◽  
Jorge Riera

Optogenetics is a modern technique which has been recently expanded to non-neuronal cell types, e.g., astrocytes, and involves targeted gene delivery of light-sensitive ion channels like Channelrhodopsin-2 (ChR2). Optogenetic regulation of astrocytic activity can be used for therapeutic intervention of several neurological disorders. Astrocytic gene delivery, viz adeno-associated viral (AAV) vectors, have proven to be robust, time-, and cost-efficient contrary to the generation of transgenic animal models. When transducing astrocytes with an AAV vector, it is imperative to perform a serotype evaluation of the AAV vector due to variability in serotype transduction efficiency depending on species, target region and construct length. Rats have been a very successful animal model for studying a variety of brain disorders, from which ChR2-based intervention of astrocytes will benefit. However, the most efficient AAV capsid serotype targeting astrocytes for ChR2 expression in the in vivo rat brain cortex has not been characterized. To address this, we have evaluated AAV serotypes 1, 5, and 8 of the vector AAV-GFAP-hChR2(H134)-mCherry targeting astrocytes in the rat brain neocortex. Results show that serotype 8 exhibits promising transduction patterns, as it has demonstrated the highest tangential and radial viral spread in the rat brain. Our research will facilitate translational research for future applications of optogenetics involving the transduction of rat brain cortical astrocytes.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1373
Author(s):  
Ge Gao ◽  
Minjun Ahn ◽  
Won-Woo Cho ◽  
Byoung Soo Kim ◽  
Dong-Woo Cho

Advances in three-dimensional (3D) printing techniques and the development of tailored biomaterials have facilitated the precise fabrication of biological components and complex 3D geometrics over the past few decades. Moreover, the notable growth of 3D printing has facilitated pharmaceutical applications, enabling the development of customized drug screening and drug delivery systems for individual patients, breaking away from conventional approaches that primarily rely on transgenic animal experiments and mass production. This review provides an extensive overview of 3D printing research applied to drug screening and drug delivery systems that represent pharmaceutical applications. We classify several elements required by each application for advanced pharmaceutical techniques and briefly describe state-of-the-art 3D printing technology consisting of cells, bioinks, and printing strategies that satisfy requirements. Furthermore, we discuss the limitations of traditional approaches by providing concrete examples of drug screening (organoid, organ-on-a-chip, and tissue/organ equivalent) and drug delivery systems (oral/vaginal/rectal and transdermal/surgical drug delivery), followed by the introduction of recent pharmaceutical investigations using 3D printing-based strategies to overcome these challenges.


2021 ◽  
Author(s):  
David Prihoda ◽  
Jad Maamary ◽  
Andrew Waight ◽  
Veronica Juan ◽  
Laurence Fayadat-Dilman ◽  
...  

Despite recent advances in transgenic animal models and display technologies, humanization of mouse sequences remains the primary route for therapeutic antibody development. Traditionally, humanization is manual, laborious, and requires expert knowledge. Although automation efforts are advancing, existing methods are either demonstrated on a small scale or are entirely proprietary. To predict the immunogenicity risk, the human-likeness of sequences can be evaluated using existing humanness scores, but these lack diversity, granularity or interpretability. Meanwhile, immune repertoire sequencing has generated rich antibody libraries such as the Observed Antibody Space (OAS) that offer augmented diversity not yet exploited for antibody engineering. Here we present BioPhi, an open-source platform featuring novel methods for humanization (Sapiens) and humanness evaluation (OASis). Sapiens is a deep learning humanization method trained on the OAS database using language modeling. Based on an in silico humanization benchmark of 177 antibodies, Sapiens produced sequences at scale while achieving results comparable to that of human experts. OASis is a granular, interpretable and diverse humanness score based on 9-mer peptide search in the OAS. OASis separated human and non-human sequences with high accuracy, and correlated with clinical immunogenicity. Together, BioPhi offers an antibody design interface with automated methods that capture the richness of natural antibody repertoires to produce therapeutics with desired properties and accelerate antibody discovery campaigns. BioPhi is accessible at https://biophi.dichlab.org and https://github.com/Merck/BioPhi.


Author(s):  
Meeti Punetha ◽  
Kamlesh K. Bajwa ◽  
Seema Dua ◽  
Sonu Bansal ◽  
Vineichuno Kuotsu ◽  
...  

: Pluripotent stem cells (PSCs) have unlimited capacity of self-renewal and differentiation so that they can potentially produce any cell or tissue of animal’s body. The PSCs derived from livestock represents a more appropriate model than rodent for investigating human diseases due to their higher anatomical and physiological resemblance with human. Apart from that, livestock PSCs holds immense promises for the innovative therapies, transgenic animal production and their biomedical interest. The realization of the full potential of PSCs, however, depends on the elucidation of the molecular mechanisms which play a critical role in the maintenance of pluripotency and reprogramming procedure remains poorly understood in livestock which in turn impedes the generation of true PSCs and its usage for clinical research. An in-depth understanding of pluripotency is extremely essential for improving health and welfare of livestock animals. Therefore, present review focuses on the milestone achievements of PSCs in livestock animals and their potential application in health and production of livestock.


2021 ◽  
Vol 22 (11) ◽  
pp. 6132
Author(s):  
Aiko Robert ◽  
Michael Schöll ◽  
Thomas Vogels

Tauopathies are a heterogeneous class of neurodegenerative diseases characterized by intracellular inclusions of aggregated tau proteins. Tau aggregates in different tauopathies have distinct structural features and can be found in different cell types. Transgenic animal models overexpressing human tau have been used for over two decades in the research of tau pathology. However, these models poorly recapitulate the heterogeneity of tauopathies found in human brains. Recent findings demonstrate that injection of purified tau aggregates from the brains of human tauopathy patients recapitulates both the structural features and cell-type specificity of the tau pathology of the donor tauopathy. These models may therefore have unique translational value in the study of functional consequences of tau pathology, tau-based diagnostics, and tau targeting therapeutics. This review provides an update of the literature relating to seeding-based tauopathy and their potential applications.


Sign in / Sign up

Export Citation Format

Share Document