Wet oxidative regeneration of activated carbon loaded with reactive dye

2002 ◽  
Vol 22 (1) ◽  
pp. 73-83 ◽  
Author(s):  
R.V Shende ◽  
V.V Mahajani
2020 ◽  
Vol 14 (4) ◽  
pp. 289-299
Author(s):  
Sathish Sundararaman ◽  
Prabu Deivasigamani ◽  
Narendrakumar Gopakumaran ◽  
Jagadeesan Aravind Kumar ◽  
Jayakumar S. Balasubramaniam ◽  
...  

2012 ◽  
Vol 66 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Ş. Gül ◽  
O. Eren ◽  
Ş. Kır ◽  
Y. Önal

The objective of this study is to compare the performances of catalytic ozonation processes of two activated carbons prepared from olive stone (ACOS) and apricot stone (ACAS) with commercial ones (granular activated carbon-GAC and powder activated carbon-PAC) in degradation of reactive azo dye (Reactive Red 195). The optimum conditions (solution pH and amount of catalyst) were investigated by using absorbencies at 532, 220 and 280 nm wavelengths. Pore properties of the activated carbon (AC) such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N2 adsorption. The highest BET surface area carbon (1,275 m2/g) was obtained from ACOS with a particle size of 2.29 nm. After 2 min of catalytic ozonation, decolorization performances of ACOS and ACAS (90.4 and 91.3%, respectively) were better than that of GAC and PAC (84.6 and 81.2%, respectively). Experimental results showed that production of porous ACs with high surface area from olive and apricot stones is feasible in Turkey.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 43-50 ◽  
Author(s):  
A. Kornmüller ◽  
S. Karcher ◽  
M. Jekel

Granulated iron hydroxide (b-FeOOH) is used as a regenerable sorbent and catalyst for reactive dye removal in textile wastewater treatment. In oxidative regeneration the previously sorbed reactive dye is catalytically oxidized after activation of hydrogen peroxide to hydroxyl radicals on the FeOOH surfaces to regain adsorption capacity and reuse the sorbents. A high initial H2O2 concentration is needed for an efficient mass transfer water/solid but its consumption per oxidized dye results only in 7-25 mg mg−1. At room temperature a regeneration time of 3.5 h is necessary for decolorization and 6 h for further decomposition of the formed oxidation products to enable a reloading without any loss in adsorption capacity. Compared to Fenton's reagent, this oxidation process takes advantage of pH-independence between 4 and 8 and additionally no sludge is produced. Salts are commonly used in textile dying processes. While chloride improves the dye sorption, the presence of sulfate results in deteriorating sorption. Carbonate reacts as a scavenger of hydroxyl radicals resulting in a higher hydrogen peroxide consumption, but the efficiency of dye oxidation is only slightly affected. Nearly 20% of DOC of the sorbed dye can be attributed to short chain organic acids (formate, acetate, oxalate) indicating the far-reaching catalytic oxidation and enabling biological post-treatment.


Sign in / Sign up

Export Citation Format

Share Document