FilmTec introduces low-energy sea-water element

2004 ◽  
Vol 2004 (7) ◽  
pp. 2
Keyword(s):  
2015 ◽  
Vol 10 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Mahdi Asadi-Ghalhari ◽  
Nasser Mehrdadi ◽  
Gholamreza Nabi-Bidhendi

Water and energy shortages, has increased the need for methods that can provide low energy for desalination of sea water. Microbial desalination cell is one of the most important of these methods. In this study we use air cathode MDC for desalination of seawater. The maximum voltage, power and current density was 607mV, 521mW/m2 and 858mA/m2 (25mM PBS) and 701mV, 695mW/m2 and 992mA/m2 (50mM PBS) respectively. During the period of the voltage generation in 50mM PBS was about 1.5 times of 25mM PBS. Under this situation, EC of seawater with initial electrical conductivity declined by 48.31±3% (25mM PBS) and 46.71±2.73% (50mM PBS). As well as decrease of salt from sea water in the middle chamber, EC in synthetic wastewater and catholyte slightly increased. So that Change percent of EC in synthetic wastewater was 44.20 ± 11.94(25mM PBS) and 27.94 ± 3 (50 mM PBS) and in catholyte was 211.66 ± 22.41(25mM PBS) and 119.24 ± 11.25 (50 mM PBS) respectively. These results show that the MDC can also be used as a pretreatment to reverse osmosis; simultaneously the energy required in this process is also partly meet.


1995 ◽  
Vol 1995 (1) ◽  
pp. 219-227 ◽  
Author(s):  
James R. Bragg ◽  
Edward H. Owens

ABSTRACT Interactions of fine mineral particles with oil stranded on shorelines following spills has been shown to be an important natural cleansing process, capable of accelerating oil removal in most environments, and particularly in low energy environments where wave action and abrasion are negligible. This process involves formation of solids-stabilized oil-in-water emulsions by flocculation of micron-sized mineral fines with oil droplets in the presence of water containing ions (such as sea water). Once flocculated, the oil droplets do not coalesce, and the oil no longer adheres strongly to shoreline sediments, facilitating its removal and dispersion by waves and tidal currents. The importance of the flocculation process to the rate of oil removal from sediments, the conditions needed for the process to occur, and the properties of the resulting floe have been studied in detail for the Exxon Valdez spill. Its potential role in shoreline cleansing also has been studied for other recent spills: Metula (1974, Chile), Arrow (1970, Nova Scotia), BIOS test spill (1981, Cape Hatt, Northwest Territories), Nosac Forest (1993, Tacoma, Washington), and Fred Bouchard (1993, Tampa, Florida). This paper summarizes the various laboratory and field studies and discusses the findings within the contexts of natural shoreline cleansing, and the use of certain treatment techniques.


2020 ◽  
Author(s):  
Amall Ramanathan ◽  
Maha Aqra

<p></p><p>The growing population and energy demand, coupled with the depleting fresh water resources has resulted in great progress in sea water desalination (SWD) technologies. Nanopores of 2D materials like graphene and its structural analogs are the latest innovations in membrane technology for SWD. The performance of these novel atomically thin nanopores as seen from various experimental and theoretical studies is highly encouraging with reports of water permeability 2-3 orders of magnitude greater than the conventional reverse osmosis (RO). The potential for high efficiency and the low energy requirements of these nanopores for desalination has led to tremendous efforts in fabrication and commercialization. We present here a review of the very recent patents associated with the preparation of these nanopores, the process and the efficiency of SWD. </p><br><p></p>


Author(s):  
Amall Ramanathan ◽  
Maha Aqra

<p></p><p>The growing population and energy demand, coupled with the depleting fresh water resources has resulted in great progress in sea water desalination (SWD) technologies. Nanopores of 2D materials like graphene and its structural analogs are the latest innovations in membrane technology for SWD. The performance of these novel atomically thin nanopores as seen from various experimental and theoretical studies is highly encouraging with reports of water permeability 2-3 orders of magnitude greater than the conventional reverse osmosis (RO). The potential for high efficiency and the low energy requirements of these nanopores for desalination has led to tremendous efforts in fabrication and commercialization. We present here a review of the very recent patents associated with the preparation of these nanopores, the process and the efficiency of SWD. </p><br><p></p>


1992 ◽  
Vol 22 (5) ◽  
pp. 793-803 ◽  
Author(s):  
S. Giménez ◽  
S. Garcia ◽  
M.T. Blanco ◽  
A. Palomo
Keyword(s):  

2020 ◽  
Vol 13 (3) ◽  
pp. 233-242

Abstract: The growing population and energy demand, coupled with the depleting fresh water resources resulted in great progress in sea water desalination (SWD) technologies. Nanopores of 2D materials, like graphene and its structural analogs, are the latest innovations in membrane technology for SWD. The performance of these novel atomically thin nanopores, as seen from various experimental and theoretical studies, is highly encouraging with reports of water permeability 2-3 orders of magnitude greater than the conventional reverse osmosis (RO). The potential for high efficiency and the low energy requirements of these nanopores for desalination led to tremendous efforts in fabrication and commercialization. We present here a review of the very recent patents associated with the preparation of these nanopores, the process and the efficiency of SWD. Keywords: 2D nanopores, Graphene, Membrane, Patents, Desalination.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Andrzej Komorek ◽  
Paweł Przybyłek ◽  
Wojciech Kucharczyk

This paper reports the results of the effect of sea water, natural ageing, and cross-impact loading on flexural strength and residual flexural strength of epoxy laminates with glass woven fabrics and hybrid reinforcement with glass and carbon woven fabrics. The tests were conducted on samples with different fibre reinforcement both before and after low energy cross-impact loading. Carbon fabrics decreased residual strength of the composites.


Sign in / Sign up

Export Citation Format

Share Document