Induction and patterning of neuronal development, and its connection to cell cycle control

2003 ◽  
Vol 13 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Laure Bally-Cuif ◽  
Matthias Hammerschmidt
2001 ◽  
Vol 120 (5) ◽  
pp. A322-A322
Author(s):  
M STALLS ◽  
J SUN ◽  
K THOMPSON ◽  
N VANHOUTEN

2006 ◽  
Vol 175 (4S) ◽  
pp. 317-317
Author(s):  
Xifeng Wu ◽  
Jian Gu ◽  
H. Barton Grossman ◽  
Christopher I. Amos ◽  
Carol Etzel ◽  
...  

2021 ◽  
Vol 20 ◽  
Author(s):  
Rabih Roufayel ◽  
Rabih Mezher ◽  
Kenneth B. Storey

: Selected transcription factors have critical roles to play in organism survival by regulating the expression of genes that control the adaptations needed to handle stress conditions. The retinoblastoma (Rb) protein coupled with the E2F transcription factor family was demonstrated to have roles in controlling the cell cycle during freezing and associated environmental stresses (anoxia, dehydration). Rb phosphorylation or acetylation at different sites provide a mechanism for repressing cell proliferation that is under the control of E2F transcription factors in animals facing stresses that disrupt cellular energetics or cell volume controls. Other central regulators of the cell cycle including Cyclins, Cyclin dependent kinases (Cdks), and checkpoint proteins detect DNA damage or any improper replication, blocking further progression of cell cycle and interrupting cell proliferation. This review provides an insight into the molecular regulatory mechanisms of cell cycle control, focusing on Rb-E2F along with Cyclin-Cdk complexes typically involved in development and differentiation that need to be regulated in order to survive extreme cellular stress.


2020 ◽  
pp. jbc.RA120.016511
Author(s):  
Seung J Kim ◽  
James I MacDonald ◽  
Frederick A. Dick

The retinoblastoma tumour suppressor protein (RB) plays an important role in biological processes such as cell cycle control, DNA damage repair, epigenetic regulation, and genome stability. The canonical model of RB regulation is that cyclin-CDKs phosphorylate, and render RB inactive in late G1/S, promoting entry into S phase. Recently, mono-phosphorylated RB species were described to have distinct cell-cycle independent functions, suggesting that a phosphorylation code dictates diversity of RB function. However, a biologically relevant, functional role of RB phosphorylation at non-CDK sites has remained elusive. Here, we investigated S838/T841 dual phosphorylation, its upstream stimulus, and downstream functional output.  We found that mimicking T-cell receptor activation in Jurkat leukemia cells induced sequential activation of downstream kinases including p38 MAPK, and RB S838/T841 phosphorylation.  This signaling pathway disrupts RB and condensin II interaction with chromatin.  Using cells expressing a WT or S838A/T841A mutant RB fragment, we present evidence that deficiency for this phosphorylation event prevents condensin II release from chromatin.


Sign in / Sign up

Export Citation Format

Share Document