phosphorylation event
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 11)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 14 (678) ◽  
pp. eabe4509
Author(s):  
Timothy R. Baffi ◽  
Gema Lordén ◽  
Jacob M. Wozniak ◽  
Andreas Feichtner ◽  
Wayland Yeung ◽  
...  

The complex mTORC2 is accepted to be the kinase that controls the phosphorylation of the hydrophobic motif, a key regulatory switch for AGC kinases, although whether mTOR directly phosphorylates this motif remains controversial. Here, we identified an mTOR-mediated phosphorylation site that we termed the TOR interaction motif (TIM; F-x3-F-pT), which controls the phosphorylation of the hydrophobic motif of PKC and Akt and the activity of these kinases. The TIM is invariant in mTORC2-dependent AGC kinases, is evolutionarily conserved, and coevolved with mTORC2 components. Mutation of this motif in Akt1 and PKCβII abolished cellular kinase activity by impairing activation loop and hydrophobic motif phosphorylation. mTORC2 directly phosphorylated the PKC TIM in vitro, and this phosphorylation event was detected in mouse brain. Overexpression of PDK1 in mTORC2-deficient cells rescued hydrophobic motif phosphorylation of PKC and Akt by a mechanism dependent on their intrinsic catalytic activity, revealing that mTORC2 facilitates the PDK1 phosphorylation step, which, in turn, enables autophosphorylation. Structural analysis revealed that PKC homodimerization is driven by a TIM-containing helix, and biophysical proximity assays showed that newly synthesized, unphosphorylated PKC dimerizes in cells. Furthermore, disruption of the dimer interface by stapled peptides promoted hydrophobic motif phosphorylation. Our data support a model in which mTORC2 relieves nascent PKC dimerization through TIM phosphorylation, recruiting PDK1 to phosphorylate the activation loop and triggering intramolecular hydrophobic motif autophosphorylation. Identification of TIM phosphorylation and its role in the regulation of PKC provides the basis for AGC kinase regulation by mTORC2.


2021 ◽  
Author(s):  
Brie Sorrenson ◽  
Waruni C Dissanayake ◽  
Fengyun Hu ◽  
Kate L Lee ◽  
Peter R Shepherd

The presence of adherens junctions and the associated protein β-catenin are requirements for the development of glucose stimulated insulin secretion (GSIS) in β-cells. Evidence indicates that modulation of β-catenin function in response to changes in glucose levels can modulate the levels of insulin secretion from β-cells but the role of β-catenin phosphorylation in this process has not been established. We find that a Ser552Ala version of β-catenin attenuates glucose stimulated insulin secretion indicating a functional role for Ser552 phosphorylation of β-catenin in insulin secretion. This is associated with alterations F/G actin ratio  but not  transcriptional activity of β-catenin.   Both glucose and GLP-1 stimulated phosphorylation of the serine 552 residue on β-catenin.  We investigated the possibility that an EPAC-PAK1 pathway might be involved in this phosphorylation event.  We find that reduction in PAK1 levels using siRNA attenuates both glucose and GLP-1 stimulated phosphorylation of β-catenin Ser552 and the effects of these on insulin secretion in β-cell models. Further, both the EPAC inhibitor ESI-09 and the PAK1 inhibitor IPA3 do the same in both β-cell models and mouse islets. Together this identifies phosphorylation of β-catenin at Ser552 as part of a cell signalling mechanism linking nutrient and hormonal regulation of β-catenin to modulation of  insulin secretory capacity of β-cells and indicates this phosphorylation event is regulated downstream of EPAC and PAK1 in β-cells.


2021 ◽  
Author(s):  
Salar Ahmad ◽  
Jacques Côté

ABSTRACTThe repair of DNA double-strand breaks (DSBs) occurs in chromatin and several histone post-translational modifications have been implicated in the process. Modifications of histone H2A N-terminal tail has also been linked to DNA damage response, through acetylation or ubiquitination of lysine residues that regulate repair pathway choice. Here, we characterize a new DNA damage-induced phosphorylation event on chromatin, at serine 15 of H2A in yeast. We show that this SQ motif functions independently of the classical S129 C-terminal site (γH2A) and mutant mimicking constitutive phosphorylation increases cell sensitivity to DNA damage. H2AS129ph is induced by both Tel1ATM and Mec1ATR, and loss of Lcd1ATRIP or Mec1 signaling decreases γH2A spreading distal to DSB. In contrast, H2AS15ph is completely dependent on Lcd1ATRIP, indicating that this modification only happens when end resection is engaged. This link is supported by an increase of RPA binding in the H2AS15E phosphomimic mutant, reflecting higher resection. This serine on H2A is replaced by a lysine in higher eukaryotes (H2AK15), which undergoes an acetyl-monoubiquityl switch to regulate binding of 53BP1 and therefore resection. This regulation seems functionally conserved with budding yeast H2AS15 and the 53BP1-homolog Rad9, utilizing different post-translational modifications between organisms but achieving the same function.


2021 ◽  
Author(s):  
Michael P. Smith ◽  
Harriet R. Ferguson ◽  
Jennifer Ferguson ◽  
Egor Zindy ◽  
Katarzyna M. Kowalczyk ◽  
...  

SUMMARYIntegration of signaling downstream from individual Receptor Tyrosine Kinases (RTKs) is crucial to fine tune cellular homeostasis during development and in pathological conditions, including breast cancer. However, how signalling integration is regulated and whether the endocytic fate of single receptors controls such signalling integration still remain poorly elucidated. Focusing on distinct Fibroblast Growth Factor Receptors (FGFRs) we generated a detailed picture of recycling-dependent FGF signalling in breast cancer cells by combining quantitative phosphoproteomics and targeted assays. We discovered reciprocal priming between FGFRs and Epidermal Growth Factor Receptor (EGFR) within recycling endosomes. FGFR recycling ligands induce EGFR phosphorylation on threonine 693. This phosphorylation event alters both FGFR and EGFR trafficking and primes FGFR-mediated cell cycle but not cell invasion. In turn, FGFR signaling primes EGF-mediated outputs. The discovery of reciprocal priming between distict families of RTKs within recycling endosomes will transform our understanding of signalling integration by pointing to recycling endosomes as crucial signalling hubs for orchestrating cellular behaviour. Therefore, targeting reciprocal priming rather than individual receptors may improve personalized therapies in breast and other cancers.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Allain Baldo ◽  
Nicholas Dardano ◽  
Allan Sniderman ◽  
Katherine Cianflone

The triglyceride (TG) synthetic pathway is believed to be regulated at the level of the rate-limiting enzyme acyl-CoA:1,2-diacylglycerol O-acyltransferase (DGAT). Recent reports using rat hepatic tissue suggest a kinase-dependent mechanism for the regulation of DGAT activity. To examine this process further, the present study investigates the regulatory mechanisms involved in the modulation of DGAT in human adipocytes. Adipocytes were fractionated into a microsomal fraction containing DGAT and a cytosolic fraction containing a putative regulatory kinase. DGAT activity was determined bymeasuring the incorporation of 14C-oleoyl-CoA into TG with exogenously supplied 1,2-dioleoyl-sn-glycerol. Kinase activity was assayed by addition of the cytosolic fraction in the presence of Mg2+ and ATP. The results indicate a significant inhibition of human adipose tissue DGAT activity by as much as 43% (avg: 17.5% ± 10.4%, p < 0.01) via a mechanism consistent with a phosphorylation event. Partial purification of the putative cytosolic kinase was achieved by multidimensional chromatography. This study thus provides evidence for a novel and key regulatory step in the human TG biosynthetic pathway. Further research is necessary to determine whether the model outlined here is a physiologic conduit through which extracellular hormones exert a regulatory influence on TG synthesis.


2020 ◽  
pp. jbc.RA120.016511
Author(s):  
Seung J Kim ◽  
James I MacDonald ◽  
Frederick A. Dick

The retinoblastoma tumour suppressor protein (RB) plays an important role in biological processes such as cell cycle control, DNA damage repair, epigenetic regulation, and genome stability. The canonical model of RB regulation is that cyclin-CDKs phosphorylate, and render RB inactive in late G1/S, promoting entry into S phase. Recently, mono-phosphorylated RB species were described to have distinct cell-cycle independent functions, suggesting that a phosphorylation code dictates diversity of RB function. However, a biologically relevant, functional role of RB phosphorylation at non-CDK sites has remained elusive. Here, we investigated S838/T841 dual phosphorylation, its upstream stimulus, and downstream functional output.  We found that mimicking T-cell receptor activation in Jurkat leukemia cells induced sequential activation of downstream kinases including p38 MAPK, and RB S838/T841 phosphorylation.  This signaling pathway disrupts RB and condensin II interaction with chromatin.  Using cells expressing a WT or S838A/T841A mutant RB fragment, we present evidence that deficiency for this phosphorylation event prevents condensin II release from chromatin.


2020 ◽  
Vol 48 (20) ◽  
pp. 11421-11433
Author(s):  
Louise Dalskov ◽  
Ryo Narita ◽  
Line L Andersen ◽  
Nanna Jensen ◽  
Sonia Assil ◽  
...  

Abstract IRF3 and IRF7 are critical transcription factors in the innate immune response. Their activation is controlled by phosphorylation events, leading to the formation of homodimers that are transcriptionally active. Phosphorylation occurs when IRF3 is recruited to adaptor proteins via a positively charged surface within the regulatory domain of IRF3. This positively charged surface also plays a crucial role in forming the active homodimer by interacting with the phosphorylated sites stabilizing the homodimer. Here, we describe a distinct molecular interaction that is responsible for adaptor docking and hence phosphorylation as well as a separate interaction responsible for the formation of active homodimer. We then demonstrate that IRF7 can be activated by both MAVS and STING in a manner highly similar to that of IRF3 but with one key difference. Regulation of IRF7 appears more tightly controlled; while a single phosphorylation event is sufficient to activate IRF3, at least two phosphorylation events are required for IRF7 activation.


2020 ◽  
Author(s):  
Seung J. Kim ◽  
James I. MacDonald ◽  
Frederick A. Dick

ABSTRACTThe retinoblastoma tumour suppressor protein (RB) plays an important role in biological processes such as cell cycle control, DNA damage repair, epigenetic regulation, and genome stability. The canonical model of RB regulation is that cyclin-CDKs phosphorylate, and render RB inactive in late G1/S, promoting entry into S phase. Recently, mono-phosphorylated RB species were described to have distinct cell-cycle independent functions, suggesting that a phosphorylation code dictates diversity of RB function. However, a biologically relevant, functional role of RB phosphorylation at non-CDK sites has remained elusive. Here, we investigated S838/T841 dual phosphorylation, its upstream stimulus, and downstream functional output. We found that mimicking T-cell receptor activation in Jurkat leukemia cells induced sequential activation of downstream kinases including p38 MAPK, and RB S838/T841 phosphorylation. This signaling pathway disrupts RB and condensin II interaction with chromatin. Using cells expressing a WT or S838A/T841A mutant RB fragment, we present evidence that deficiency for this phosphorylation event prevents condensin II release from chromatin.


2020 ◽  
Vol 21 (10) ◽  
pp. 3684 ◽  
Author(s):  
Antja-Voy Hartley ◽  
Benlian Wang ◽  
Guanglong Jiang ◽  
Han Wei ◽  
Mengyao Sun ◽  
...  

The overexpression of PRMT5 is highly correlated to poor clinical outcomes for colorectal cancer (CRC) patients. Importantly, our previous work demonstrated that PRMT5 overexpression could substantially augment activation of the nuclear factor kappa B (NF-κB) via methylation of arginine 30 (R30) on its p65 subunit, while knockdown of PRMT5 showed the opposite effect. However, the precise mechanisms governing this PRMT5/NF-κB axis are still largely unknown. Here, we report a novel finding that PRMT5 is phosphorylated on serine 15 (S15) in response to interleukin-1β (IL-1β) stimulation. Interestingly, we identified for the first time that the oncogenic kinase, PKCι could catalyze this phosphorylation event. Overexpression of the serine-to-alanine mutant of PRMT5 (S15A), in either HEK293 cells or CRC cells HT29, DLD1, and HCT116 attenuated NF-κB transactivation compared to WT-PRMT5, confirming that S15 phosphorylation is critical for the activation of NF-κB by PRMT5. Furthermore, the S15A mutant when compared to WT-PRMT5, could downregulate a subset of IL-1β-inducible NF-κB-target genes which correlated with attenuated promoter occupancy of p65 at its target genes. Additionally, the S15A mutant reduced IL-1β-induced methyltransferase activity of PRMT5 and disrupted the interaction of PRMT5 with p65. Furthermore, our data indicate that blockade of PKCι-regulated PRMT5-mediated activation of NF-κB was likely through phosphorylation of PRMT5 at S15. Finally, inhibition of PKCι or overexpression of the S15A mutant attenuated the growth, migratory, and colony-forming abilities of CRC cells compared to the WT-PRMT5. Collectively, we have identified a novel PKCι/PRMT5/NF-κB signaling axis, suggesting that pharmacological disruption of this pivotal axis could serve as the basis for new anti-cancer therapeutics.


2019 ◽  
Author(s):  
Lina Herhaus ◽  
Ramachandra M. Bhaskara ◽  
Alf Håkon Lystad ◽  
Anne Simonsen ◽  
Gerhard Hummer ◽  
...  

AbstractAutophagy is a highly conserved catabolic process through which defective or otherwise harmful cellular components are targeted for degradation via the lysosomal route. Regulatory pathways, involving post-translational modifications such as phosphorylation, play a critical role in controlling this tightly orchestrated process. Here, we demonstrate that TBK1 regulates autophagy by phosphorylating autophagy modifiers LC3C and GABARAP-L2 on surface-exposed serine residues (LC3C S93 and S96; GABARAP-L2 S87 and S88). This phosphorylation event impedes their binding to the processing enzyme ATG4 by destabilizing the complex. Phosphorylated LC3C/GABARAP-L2 cannot be removed from liposomes by ATG4 and are thus protected from ATG4-mediated premature removal from nascent autoph-agosomes. This ensures a steady coat of lipidated LC3C/GABARAP-L2 throughout the early steps in autophagosome formation and aids in maintaining a unidirectional flow of the autophagosome to the lysosome. Taken together, we present a new regulatory mechanism of autophagy, which influences the conjugation and de-conjugation of LC3C and GABARAP-L2 to autophagosomes by TBK1-mediated phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document