rb phosphorylation
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 1)

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6117
Author(s):  
Tsung-Han Hsieh ◽  
Muh-Lii Liang ◽  
Jia-Huei Zheng ◽  
Yu-Chen Lin ◽  
Yu-Chen S. H. Yang ◽  
...  

Glioblastoma multiforme (GBM) is the most malignant brain tumor in the world, only 25% of GBM patients were alive one year after diagnosis. Although Temozolamide combined with radiation therapy more effectively prolonged the survival rate than radiation alone, the overall survival rate is still dismal. Therefore, a new therapeutic strategy is urgently needed. CDK4/6 inhibitors are newly FDA-approved agents to treat HR-positive, HER2-negative advanced, and metastatic breast cancers, and preclinical results showed that CDK4/6 inhibitors significantly reduced cell proliferation and tumor growth. However, several studies have suggested that CDK4/6 inhibitor-induced non-genetic changes caused treatment failure, including autophagy activation. Therefore, this study aimed to combine an autophagy inhibitor, MPT0L145, with abemaciclib to improve therapeutic efficiency. The use of abemaciclib effectively inhibited cell proliferation via suppression of RB phosphorylation and induced autophagy activation in GBM cancer cells. MPT0L145 treatment alone not only blocked autophagy activation, but also induced generation of ROS and DNA damage in a concentration-dependent manner. Importantly, MPT0L145 had a comparable penetration ability to TMZ in our blood brain barrier permeability assay. Combined MPT0L145 with abemaciclib significantly reduced cell proliferation, suppressed RB phosphorylation, and increased ROS production. In conclusion, the data suggested that blocking autophagy by MPT0L145 synergistically sensitized GBM cancer cells to abemaciclib and represents a potential therapeutic strategy for treating GBM in the future.


2021 ◽  
Author(s):  
Gerald Lossaint ◽  
Andela Horvat ◽  
Veronique Gire ◽  
Katarina Bacevic ◽  
Karim Mrouj ◽  
...  

Senescence is an irreversible proliferation withdrawal that can be initiated after DNA damage-induced cell cycle arrest in G2 phase to prevent genomic instability. Senescence onset in G2 is not well understood; it requires p53 and RB family tumour suppressors, but how they are regulated to convert a temporary cell cycle arrest into a permanent one remains unknown. Here, we show that a previously unrecognised balance between the CDK inhibitor p21 and Chk1 controls D-type cyclin-CDK activity during G2 arrest. In non-transformed cells, p21 activates RB in G2 by inhibiting Cyclin D1-CDK2/CDK4. The resulting G2 exit, which precedes appearance of senescence markers, is associated with a mitotic bypass, Chk1 inhibition and DNA damage foci reduction. In p53/RB-proficient cancer cells, compromised G2 exit correlates with sustained Chk1 activity, delayed p21 induction, untimely Cyclin E1 re-expression and genome reduplication. Chk1 depletion promotes cell cycle exit by inducing p21 binding to Cyclin D1 and Cyclin E1-CDK complexes and down-regulating CDK6, whereas Chk2 knockdown promotes RB phosphorylation and delays G2 exit. In conclusion, p21 and Chk2 oppose Chk1 to maintain RB activity, thus controlling DNA damage-induced senescence onset in G2.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Dong Hwan Ho ◽  
Daleum Nam ◽  
Mi Kyoung Seo ◽  
Sung Woo Park ◽  
Wongi Seol ◽  
...  

Background. Leucine-rich repeat kinase 2 (LRRK2) plays a critical role in the pathogenesis of Parkinson’s disease (PD). Aging is the most critical risk factor for the progression of PD. The correlation between aging and cellular senescence has been established. Cellular senescence is correlated with the dysregulation of the proteolytic pathway and mitochondrial dysfunction, which are also associated with the aggregation of α-synuclein (α-syn). Methods. Human dopaminergic neuron-like cells (differentiated SH-SY5Y cells) were treated with rotenone in the presence or absence of the LRRK2 kinase inhibitor GSK2578215A (GSK-KI) for 48 h. The markers of cellular senescence, including p53, p21Waf1/Cip1 (p21), β-galactosidase (β-gal), Rb phosphorylation, senescence-associated (SA) β-gal activity, and lysosomal activity, were examined. The dSH cells and rat primary cortical neurons were treated with α-syn fibrils 30 min before treatment with rotenone in the presence or absence of GSK-KI for 48 h. Mice were intraperitoneally injected with rotenone and MLi-2 (LRRK2 kinase inhibitor) once every two days for two weeks. Results. Rotenone upregulated LRRK2 phosphorylation and β-gal levels through the activation of the p53-p21 signaling axis and downregulated Rb phosphorylation. Additionally, rotenone upregulated SA β-gal activity, reactive oxygen species levels, and LRRK2 phosphorylation and inhibited lysosome activity. Rotenone-induced LRRK2 upregulation impaired the clearance of α-syn fibrils. Treatment with LRRK2 inhibitor mitigated rotenone-induced cellular senescence and α-syn accumulation. Conclusions. Rotenone-induced upregulation of LRRK2 kinase activity promoted cellular senescence, which enhanced α-syn accumulation. However, the administration of an LRRK2 kinase inhibitor rejuvenated rotenone-induced cellular senescence.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Silvana Mouron ◽  
Luis Manso ◽  
Eduardo Caleiras ◽  
Jose L. Rodriguez-Peralto ◽  
Oscar M. Rueda ◽  
...  

Abstract Background FGFR1 amplification, but not overexpression, has been related to adverse prognosis in hormone-positive breast cancer (HRPBC). Whether FGFR1 overexpression and amplification are correlated, what is their distribution among luminal A or B HRPBC, and if there is a potential different prognostic role for amplification and overexpression are currently unknown features. The role of FGFR1 inhibitors in HRPBC is also unclear. Methods FGFR1 amplification (FISH) and overexpression (RNAscope) were investigated in a N = 251 HRPBC patients cohort and the METABRIC cohort; effects on survival and FISH-RNAscope concordance were determined. We generated hormonal deprivation resistant (LTED-R) and FGFR1-overexpressing cell line variants of the ER+ MCF7 and T47-D and the ER+, FGFR1-amplified HCC1428 cell lines. The role of ER, CDK4/6, and/or FGFR1 blockade alone or in combinations in Rb phosphorylation, cell cycle, and survival were studied. Results FGFR1 overexpression and amplification was non-concordant in > 20% of the patients, but both were associated to a similar relapse risk (~ 2.5-fold; P < 0.05). FGFR1 amplification or overexpression occurred regardless of the luminal subtype, but the incidence was higher in luminal B (16.3%) than A (6.6%) tumors; P < 0.05. The Kappa index for overexpression and amplification was 0.69 (P < 0.001). Twenty-four per cent of the patients showed either amplification and/or overexpression of FGFR1, what was associated to a hazard ratio for relapse of 2.6 (95% CI 1.44–4.62, P < 0.001). In vitro, hormonal deprivation led to FGFR1 overexpression. Primary FGFR1 amplification, engineered mRNA overexpression, or LTED-R-acquired FGFR1 overexpression led to resistance against hormonotherapy alone or in combination with the CDK4/6 inhibitor palbociclib. Blocking FGFR1 with the kinase-inhibitor rogaratinib led to suppression of Rb phosphorylation, abrogation of the cell cycle, and resistance-reversion in all FGFR1 models. Conclusions FGFR1 amplification and overexpression are associated to similar adverse prognosis in hormone-positive breast cancer. Capturing all the patients with adverse prognosis-linked FGFR1 aberrations requires assessing both features. Hormonal deprivation leads to FGFR1 overexpression, and FGFR1 overexpression and/or amplification are associated with resistance to hormonal monotherapy or in combination with palbociclib. Both resistances are reverted with triple ER, CDK4/6, and FGFR1 blockade.


2021 ◽  
Author(s):  
Xiaohui Zhou ◽  
Yeqing Gong ◽  
Xiaorong Liu ◽  
Jiaqi Mao ◽  
Zhen Chen ◽  
...  

Abstract Background: The heterogenetic nature of colorectal cancer (CRC) constitutes a major challenge for drug development. Simultaneous targeting multiple molecules by combination therapy provides a promising strategy, but it requires identification of more potentially useful targeted agents. Palbociclib, a selective CDK4/6 inhibitor approved for the treatment of HR/ER-positive and HER2-negative breast cancer, exhibited anti-cancer versatility in several types of cancer. In this study, we evaluated its usefulness in the treatment of CRC either by single-agent or combined with a small molecule EGFR inhibitor erlotinib. Methods: The impacts of palbociclib, erlotinib, and their combination on cell proliferation, colony formation, cell cycle, apoptosis, senescence, and ROS accumulation in CRC cells were assessed. Their efficacies were evaluated in CRC patient-derived organoids (PDO) and xenograft (PDX) models.Results: Single-agent palbociclib efficiently inhibited proliferation, suppressed the RB phosphorylation, and caused G1-phase arrest in KRAS/BRAF mutated CRC cell lines. IC50 of all cell lines were below 1 µM. Moreover, it induced ROS accumulation and consequently caused apoptosis and senescence of CRC cells. The addition of erlotinib further aggravated palbociclib-induced anti-proliferation, cell cycle arrest, ROS accumulation, apoptosis, and senescence via blocking multiple critical effectors on RB/PI3K/RAS pathways and such interaction between two agents are synergistic. Finally, both palbociclib and erlotinib demonstrated anti-CRC activities, but only their combination caused statistically meaningful inhibition of tumor growth and prolonged survival with tolerable toxicity in KRAS wildtype/mutated PDX models. Conclusion: Our work demonstrated that the palbociclib and erlotinib combination treatment is a promising therapy for CRC and worthy of further clinical evaluation.


2021 ◽  
Vol 20 ◽  
Author(s):  
Rabih Roufayel ◽  
Rabih Mezher ◽  
Kenneth B. Storey

: Selected transcription factors have critical roles to play in organism survival by regulating the expression of genes that control the adaptations needed to handle stress conditions. The retinoblastoma (Rb) protein coupled with the E2F transcription factor family was demonstrated to have roles in controlling the cell cycle during freezing and associated environmental stresses (anoxia, dehydration). Rb phosphorylation or acetylation at different sites provide a mechanism for repressing cell proliferation that is under the control of E2F transcription factors in animals facing stresses that disrupt cellular energetics or cell volume controls. Other central regulators of the cell cycle including Cyclins, Cyclin dependent kinases (Cdks), and checkpoint proteins detect DNA damage or any improper replication, blocking further progression of cell cycle and interrupting cell proliferation. This review provides an insight into the molecular regulatory mechanisms of cell cycle control, focusing on Rb-E2F along with Cyclin-Cdk complexes typically involved in development and differentiation that need to be regulated in order to survive extreme cellular stress.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii414-iii414
Author(s):  
Muh-Lii Liang ◽  
Tsung-Han Hsieh ◽  
Tai-Tong Wong

Abstract BACKGROUND Glial-lineage tumors constitute a heterogeneous group of neoplasms, comprising gliomas, oligodendrogliomas, and ependymomas, which account for 40%–50% of all pediatric central nervous system tumors. Advances in modern neuro-oncological therapeutics are aimed at improving neoadjuvant chemotherapy and deferring radiotherapy because radiation exposure may cause long-term side effects on the developing brain in young children. Despite aggressive treatment, more than half the high-grade gliomas (pHGGs) and one-third of ependymomas exhibit recurrence within 2 years of initial treatment. METHODS By using integrated bioinformatics and through experimental validation, we found that at least one gene among CCND1, CDK4, and CDK6 was overexpressed in pHGGs and ependymomas. RESULTS The use of abemaciclib, a highly selective CDK4/6 inhibitor, effectively inhibited cell proliferation and reduced the expression of cell cycle–related and DNA repair–related gene expression, which was determined through RNA-seq analysis. The efficiency of abemaciclib was validated in vitro in pHGGs and ependymoma cells and in vivo by using subcutaneously implanted ependymoma cells from patient-derived xenograft (PDX) in mouse models. Abemaciclib demonstrated the suppression of RB phosphorylation, downstream target genes of E2F, G2M checkpoint, and DNA repair, resulting in tumor suppression. CONCLUSION Abemaciclib showed encouraging results in preclinical pediatric glial-lineage tumors models and represented a potential therapeutic strategy for treating challenging tumors in children.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3597
Author(s):  
Muh-Lii Liang ◽  
Chun-Han Chen ◽  
Yun-Ru Liu ◽  
Man-Hsu Huang ◽  
Yu-Chen Lin ◽  
...  

Pediatric ependymomas are a type of malignant brain tumor that occurs in children. The overall 10-year survival rate has been reported as being 45–75%. Maximal safe surgical resection combined with adjuvant chemoradiation therapy is associated with the highest overall and progression-free survival rates. Despite aggressive treatment, one-third of ependymomas exhibit recurrence within 2 years of initial treatment. Therefore, this study aimed to find new agents to overcome chemoresistance and defer radiotherapy treatment since, in addition, radiation exposure may cause long-term side effects in the developing brains of young children. By using integrated bioinformatics and through experimental validation, we found that at least one of the genes CCND1 and CDK4 is overexpressed in ependymomas. The use of abemaciclib, a highly selective CDK4/6 inhibitor, effectively inhibited cell proliferation and reduced the expression of cell-cycle-related and DNA-repair-related gene expression via the suppression of RB phosphorylation, which was determined through RNA-seq and Western blot analyses. Furthermore, abemaciclib effectively induced cell death in vitro. The efficiency of abemaciclib was validated in vivo using subcutaneously implanted ependymoma tissues from patient-derived xenografts (PDXs) in mouse models. Treatment with abemaciclib showed encouraging results in preclinical pediatric ependymoma models and represents a potential therapeutic strategy for treating challenging tumors in children.


2020 ◽  
pp. jbc.RA120.016511
Author(s):  
Seung J Kim ◽  
James I MacDonald ◽  
Frederick A. Dick

The retinoblastoma tumour suppressor protein (RB) plays an important role in biological processes such as cell cycle control, DNA damage repair, epigenetic regulation, and genome stability. The canonical model of RB regulation is that cyclin-CDKs phosphorylate, and render RB inactive in late G1/S, promoting entry into S phase. Recently, mono-phosphorylated RB species were described to have distinct cell-cycle independent functions, suggesting that a phosphorylation code dictates diversity of RB function. However, a biologically relevant, functional role of RB phosphorylation at non-CDK sites has remained elusive. Here, we investigated S838/T841 dual phosphorylation, its upstream stimulus, and downstream functional output.  We found that mimicking T-cell receptor activation in Jurkat leukemia cells induced sequential activation of downstream kinases including p38 MAPK, and RB S838/T841 phosphorylation.  This signaling pathway disrupts RB and condensin II interaction with chromatin.  Using cells expressing a WT or S838A/T841A mutant RB fragment, we present evidence that deficiency for this phosphorylation event prevents condensin II release from chromatin.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Satoru Yokoyama ◽  
Yusuke Iwakami ◽  
Zhao Hang ◽  
Ryoei Kin ◽  
Yue Zhou ◽  
...  

Abstract Although melanoma therapy is improved by novel molecular targeted reagents, including vemurafenib, aberrant proliferation and early metastasis remain obstacles for melanoma; therefore, novel target molecules for melanoma need to be identified. In this study, we focused on deubiquitinating enzymes, which regulate protein stability through ubiquitin–proteasome systems, and identified 26S proteasome non-ATPase regulatory subunit 14 (PSMD14) as a molecule related to melanoma growth using siRNA library screening. Similar to a previous report, PSMD14 knockdown strongly induced p21 expression and inhibited RB phosphorylation in melanoma. After in silico analysis, TGF-β signaling was identified as a negatively correlated gene set with PSMD14 expression. Although TGF-β signaling is also related to the invasive phenotype of melanoma, PSMD14 knockdown suppressed melanoma migration and reduced SLUG expression, suggesting that targeting PSMD14 suppresses both growth and migration. Furthermore, SMAD3 expression increased in nucleus and SMAD3 degradation was delayed after PSMD14 knockdown. Thus, our present study suggests that targeting PSMD14 can inhibit melanoma growth and migration through either SMAD3 accumulation or SLUG reduction, respectively.


Sign in / Sign up

Export Citation Format

Share Document