793 Activity of Lenalidomide in Vitro and in Vivo Models of Bortezomib-resistant Mantle Cell Lymphoma Involving the Modulation of C-myc/p27 Axis

2012 ◽  
Vol 48 ◽  
pp. S188-S189
Author(s):  
A. Moros ◽  
I. Saborit-Villarroya ◽  
P. Pérez-Galán ◽  
A. Martínez ◽  
E. Campo ◽  
...  
2013 ◽  
Vol 20 (2) ◽  
pp. 393-403 ◽  
Author(s):  
Alexandra Moros ◽  
Sophie Bustany ◽  
Julie Cahu ◽  
Ifigènia Saborit-Villarroya ◽  
Antonio Martínez ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3918-3918
Author(s):  
Arnau Montraveta ◽  
Mercè de Frías ◽  
Clara Campàs ◽  
Elias Campo ◽  
Gael Roue ◽  
...  

Abstract Abstract 3918 Mantle cell lymphoma (MCL) is a mature B-cell neoplasm characterized by the t(11;14)(q13:q32) that involves cyclin D1 overexpression and consequent cell cycle deregulation at the G1 phase. This entity is generally characterized by an aggressive course and a bad prognosis. Recently, a specific subtype of MCL has been described, showing best outcomes and that might be managed more conservatively than conventional MCL. These cases are characterized by non-nodal presentation, predominantly hypermutated IgVH, lack of genomic complexity, and absence of SOX11 expression. Acadesine is a nucleoside analogue initially developed as a cardioprotective agent, and which has shown a wide range of metabolic effects, including the activation of AMP-activated protein kinase (AMPK). Acadesine was shown to induce apoptosis in primary cells from several B lymphoid neoplasms and has been entered in a phase I/II clinical trial with relapsed/refractory chronic lymphocytic leukemia (CLL) patients. This clinical study has shown that acadesine plasmatic levels in the micro molar range are achievable and safe when CLL patients are treated with the drug. To evaluate the antitumoral properties of acadesine in MCL, we exposed a set of 11 MCL primary cultures and 9 MCL cell lines for up to 48h with increasing doses of the drug. Cytotoxicity and cytostatic effects were then assessed by flow cytometry detection of annexinV/propidium iodide labeling and MTT proliferation assay, respectively. In both MCL cell lines and MCL primary cultures, we observed a heterogeneous response to the drug, with no correlation to common genetic alterations such as deletion/mutation of P53, ATM or P16 genes. JVM2, Jeko-1, Rec-1 and UPN-1 were the more sensitive cell lines, with a mean lethal dose 50 (LD50) of 1.57 mM at 24 h and 0.95 mM at 48h, while 2 cell lines (HBL-2 and Granta-519) showed a primary resistance to the compound (LD50 > 50 mM). Among MCL primary cultures, acadesine showed selective cytotoxic activity against malignant B cells while sparing accompanying T cells. Of note, those cases corresponding to the indolent MCL group showed increased sensitivity to the drug at 24h of treatment, when compared to conventional MCL cases (p=0.03). We observed that acadesine efficiently activates the intrinsic apoptotic pathway in MCL cells by modulating Bcl-2 family protein levels, leading to conformational activation of Bax and Bak, mitochondrial depolarization, generation of reactive oxygen species and caspases processing. In drug combination assays, acadesine showed a synergistic effect when combined with Rituximab, being the Rituximab-acadesine combination more potent than other Rituximab-based polychemotherapies such as R-bendamustine and R-CHOP. Finally, a daily administration of 400mg/kg acadesine in mice previously inoculated with a MCL xenotransplant significantly reduced tumor burden when compared to control animals, as soon as 7 days of treatment. In summary, these results suggest that acadesine exerts significant antitumoral activity in both in vitro and in vivo model of MCL, and may represent an attractive model for the design of a new therapeutic approach for this entity, especially in patients presenting with the indolent form. Disclosures: de Frías: Advancell therapeutics: Employment. Campàs:Advancell therapeutics: Employment.


2012 ◽  
Vol 84 (4) ◽  
pp. 451-458 ◽  
Author(s):  
Mi-Ae Lyu ◽  
Lan V. Pham ◽  
Bokyung Sung ◽  
Archito T. Tamayo ◽  
Kwang Seok Ahn ◽  
...  

ESMO Open ◽  
2018 ◽  
Vol 3 (6) ◽  
pp. e000387 ◽  
Author(s):  
Chiara Tarantelli ◽  
Elena Bernasconi ◽  
Eugenio Gaudio ◽  
Luciano Cascione ◽  
Valentina Restelli ◽  
...  

BackgroundThe outcome of patients affected by mantle cell lymphoma (MCL) has improved in recent years, but there is still a need for novel treatment strategies for these patients. Human cancers, including MCL, present recurrent alterations in genes that encode transcription machinery proteins and of proteins involved in regulating chromatin structure, providing the rationale to pharmacologically target epigenetic proteins. The Bromodomain and Extra Terminal domain (BET) family proteins act as transcriptional regulators of key signalling pathways including those sustaining cell viability. Birabresib (MK-8628/OTX015) has shown antitumour activity in different preclinical models and has been the first BET inhibitor to successfully undergo early clinical trials.Materials and methodsThe activity of birabresib as a single agent and in combination, as well as its mechanism of action was studied in MCL cell lines.ResultsBirabresib showed in vitro and in vivo activities, which appeared mediated via downregulation of MYC targets, cell cycle and NFKB pathway genes and were independent of direct downregulation of CCND1. Additionally, the combination of birabresib with other targeted agents (especially pomalidomide, or inhibitors of BTK, mTOR and ATR) was beneficial in MCL cell lines.ConclusionOur data provide the rationale to evaluate birabresib in patients affected by MCL.


2015 ◽  
Vol 21 (19) ◽  
pp. 4391-4397 ◽  
Author(s):  
Matthew J. Barth ◽  
Cory Mavis ◽  
Myron S. Czuczman ◽  
Francisco J. Hernandez-Ilizaliturri

Blood ◽  
2016 ◽  
Vol 128 (21) ◽  
pp. 2517-2526 ◽  
Author(s):  
Caron Jacobson ◽  
Nadja Kopp ◽  
Jacob V. Layer ◽  
Robert A. Redd ◽  
Sebastian Tschuri ◽  
...  

Key Points Inhibition of HSP90 targets multiple dependences in mantle cell lymphoma. Clinically available HSP90 inhibitors overcome ibrutinib resistance in vitro and in vivo.


2015 ◽  
Vol 43 (9) ◽  
pp. 770-774.e2 ◽  
Author(s):  
Rajeswaran Mani ◽  
Chi-Ling Chiang ◽  
Frank W. Frissora ◽  
Ribai Yan ◽  
Xiaokui Mo ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3729-3729
Author(s):  
Heather Gilbert ◽  
John Cumming ◽  
Josef T. Prchal ◽  
Michelle Kinsey ◽  
Paul Shami

Abstract Abstract 3729 Poster Board III-665 Mantle cell lymphoma (MCL) is a well defined B-cell non-Hodgkin lymphoma characterized by a translocation that juxtaposes the BCL1 gene on chromosome 11q13, which encodes cyclin D1 (CD1), next to the immunoglobulin heavy chain gene promoter on chromosome 14. The resulting constitutive overexpression of CD1 leads to a deregulated cell cycle and activation of cell survival mechanisms. In addition, the gene which encodes GST-n, an enzyme that has been implicated in the development of cancer resistance to chemotherapy, is also located on chromosome 11q13 and is often coamplified along with the BCL1 gene in MCL (1). These two unique biological features of MCL - the overproduction of cyclin D1 and GST-n – may be involved in the carcinogenesis, tumor growth and poor response of this disease to treatment, and they offer potential mechanisms for targeted anti-cancer therapy. Nitric oxide (NO) is a biologic effector molecule that contributes to a host's immune defense against microbial and tumor cell growth. Indeed, NO is potently cytotoxic to tumor cells in vitro (2–4). However, NO is also a potent vasodilator and induces hypotension, making the in vivo administration of NO very difficult. To use NO in vivo requires agents that selectively deliver NO to the targeted malignant cells. A new compound has recently been developed that releases NO upon interaction with glutathione in a reaction catalyzed by GST-n. JS-K seeks to exploit known GST-n upregulation in malignant cells by generating NO directly in cancer cells, and it has been shown to decrease the growth and increase apoptosis in vitro in AML cell lines, AML cells freshly isolated from patients, multiple myeloma cell lines, hepatoma cells and prostate cancer cell lines (3, 5–7). JS-K also decreases tumor burden in NOD/SCID mice xenografted with AML and multiple myeloma cells (5, 7). Importantly, JS-K has been used in cytotoxic doses in the mouse model without significant hypotension. To evaluate whether JS-K treatment has anti-tumor activity in MCL, the human MCL cell lines Jeko1, Mino, Granta and Hb-12 were grown with media only, with JS-K at varying concentrations and with DMSO as an appropriate vehicle control. For detection of apoptotic cells, cell-surface staining was performed with FITC-labeled anti–Annexin V and PI. Cell growth was evaluated using the Promega MTS cytotoxicity assay. Results show that JS-K (at concentrations up to 10 μM) inhibits the growth of MCL lines compared to untreated controls, with an average IC50 of 1 μM. At 48 hours of incubation, all cell lines showed a significantly greater rate of apoptosis than untreated controls. A human MCL xenograft model was then created by subcutaneously injecting two NOD/SCID IL2Rnnull mice with luciferase-transfected Hb12 cells. Seven days post-injection, one of the mice was treated with JS-K at a dose of 4 μmol/kg (expected to give peak blood levels of around 17 mM in a 20 g mouse). Injections of JS-K were given intravenously through the lateral tail vein 3 times a week. The control mouse was injected with an equivalent volume of micellar formulation (vehicle) without active drug. The Xenogen bioluminescence imaging clearly showed a difference in tumor viability, with a significantly decreased signal in the JS-K treated mouse. Our studies demonstrate that JS-K markedly decreases cell proliferation and increases apoptosis in a concentration- and time-dependent manner in mantle cells in vitro. In a xenograft model of mantle cell lymphoma, treatment with JS-K results in decreased tumor viability. Proposed future research includes further defining the molecular basis of these treatment effects; using this therapy in combination with other cancer treatments both in vitro and in vivo; and studying JS-K treatment in MCL patients. Disclosures: Shami: JSK Therapeutics: Founder, Chief Medical Officer, Stockholder.


Sign in / Sign up

Export Citation Format

Share Document