A new information theoretic approach to the entropy of non-random discrete maps relation to fractal dimension and temperature of curves

1997 ◽  
Vol 8 (6) ◽  
pp. 953-970 ◽  
Author(s):  
Guy Jumarie
Entropy ◽  
2018 ◽  
Vol 20 (7) ◽  
pp. 540 ◽  
Author(s):  
Subhashis Hazarika ◽  
Ayan Biswas ◽  
Soumya Dutta ◽  
Han-Wei Shen

Uncertainty of scalar values in an ensemble dataset is often represented by the collection of their corresponding isocontours. Various techniques such as contour-boxplot, contour variability plot, glyphs and probabilistic marching-cubes have been proposed to analyze and visualize ensemble isocontours. All these techniques assume that a scalar value of interest is already known to the user. Not much work has been done in guiding users to select the scalar values for such uncertainty analysis. Moreover, analyzing and visualizing a large collection of ensemble isocontours for a selected scalar value has its own challenges. Interpreting the visualizations of such large collections of isocontours is also a difficult task. In this work, we propose a new information-theoretic approach towards addressing these issues. Using specific information measures that estimate the predictability and surprise of specific scalar values, we evaluate the overall uncertainty associated with all the scalar values in an ensemble system. This helps the scientist to understand the effects of uncertainty on different data features. To understand in finer details the contribution of individual members towards the uncertainty of the ensemble isocontours of a selected scalar value, we propose a conditional entropy based algorithm to quantify the individual contributions. This can help simplify analysis and visualization for systems with more members by identifying the members contributing the most towards overall uncertainty. We demonstrate the efficacy of our method by applying it on real-world datasets from material sciences, weather forecasting and ocean simulation experiments.


Author(s):  
Silvia Puglisi ◽  
Jordi Forné ◽  
David Rebollo-Monedero

Websites and applications use personalisation services to profile their users, collect their patterns and activities and eventually use this data to provide tailored suggestions. User preferences and social interactions are therefore aggregated and analysed. Every time a user publishes a new post or creates a link with another entity, either another user, or some on-line resource, new information is added to the user profile. Exposing private data does not only reveal information about single users' preferences, increasing their privacy risk, but can expose more about their network that single actors intended. This mechanism is self-evident on \emph{social networks} where users receive suggestions based on their friends' activity. We propose an information theoretic approach to measure the differential update of the anonymity risk for time-varying user profiles. This expresses how privacy is affected when new content is posted and how much third party services get to know about the users when a new activity is shared. We use real Facebook data to show how our model can be applied on a real world scenario.


Sign in / Sign up

Export Citation Format

Share Document