Nano Al2O3-Pb AND SiO2-Pb cermets by sol-gel technique and the phase transformation study of the embedded Pb particles

1999 ◽  
Vol 12 (5-8) ◽  
pp. 1077-1080 ◽  
Author(s):  
P. Bhattacharya ◽  
K. Chattopadhyay
1996 ◽  
Vol 11 (10) ◽  
pp. 2611-2615 ◽  
Author(s):  
Ming-Hong Lin ◽  
Moo-Chin Wang

Glass-ceramic powders with a composition of Li2O · Al2O3 · 4SiO2 (LAS) have been synthesized by the sol-gel technique using LiOCH3, Al(OC2H5)3, Si(OC2H5)4, Ti(OC2H5)4, and Zr(OC2H5)4 as starting materials and the phase transformation behavior during calcination has been investigated. Differential thermal analysis (DTA), x-ray diffraction (XRD), and scanning electron microscopy (SEM) were utilized to determine the thermal behavior of the gels. Considering the LAS gels with 6.0 wt. % TiO2 and various wt. % ZrO2 content, and peak position of the β-spodumene phase formation in DTA curves was shifted to a higher temperature when the ZrO2 content was increased. The activation energy of β-spodumene crystallization was 283.8 kcal/mol for LAS gels with 6.0 wt. % TiO2 and 2.0 wt. % ZrO2. Unlike foregoing studies for LAS gels, during calcination of the dried LASTZ gels from 800 °C to 1200 °C neither β-eucryptite nor γ-spodumene was noted to be present. The crystallized phases comprised of β-spodumenes as the major phase and rutile (TiO2) together with zirconia (ZrO2) are precipitated as minor phases.


1999 ◽  
Vol 13 (05) ◽  
pp. 167-174 ◽  
Author(s):  
MUYING WU ◽  
WEIFENG ZHANG ◽  
ZULIANG DU ◽  
YABIN HUANG

Nanophase TiO 2 was prepared by a stearic acid sol–gel technique. X-ray measurements showed that the as-prepared sample is anatase TiO 2 phase with an average grain size of 10.4 nm. Raman spectroscopy was used to investigate the structural transformation from anatase-to-rutile in the nanophase TiO 2 annealed at a series of temperatures from 450 to 650°C. The results showed that the transformation took place in a wide annealing temperature range. The related mechanism to the phase transformation is discussed according to nanometer size effect.


2004 ◽  
Vol 2 (3) ◽  
pp. 119-123 ◽  
Author(s):  
Yanqun Shao ◽  
Dian Tang ◽  
Jinghua Sun ◽  
Yekun Lee ◽  
Weihao Xiong

2013 ◽  
Vol 1 (2) ◽  
pp. 59-69 ◽  
Author(s):  
Sarbjit Kaur ◽  
Niraj Bala ◽  
Charu Khosla
Keyword(s):  
Sol Gel ◽  

2011 ◽  
Vol 4 (3) ◽  
pp. 224-237 ◽  
Author(s):  
Aurica P. Chiriac ◽  
Loredana E. Nita ◽  
Iordana Neamtu ◽  
Manuela T. Nistor
Keyword(s):  
Sol Gel ◽  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1263
Author(s):  
Elvira Mahu ◽  
Cristina Giorgiana Coromelci ◽  
Doina Lutic ◽  
Iuliean Vasile Asaftei ◽  
Liviu Sacarescu ◽  
...  

A mesoporous titania structure has been prepared using the ultrasound-assisted sol-gel technique in order to find out a way to tailor its structure. The TiO2 obtained was compared to the same version of titania but synthesized by a conventional sol-gel method with the objective of understanding the effect of ultrasound in the synthesis process. All synthesis experiments were focused on the preparation of a titania photocatalyst. Thus, the anatase photocatalytic active phase of titania was proven by X-ray diffraction. Additionally, the ultrasonation treatment proved to increase the crystallinity of titania samples, being one of the requirements to having good photocatalytic activity for titania. The influence of surfactant/titania precursor weight ratio on the structural (XRD), textural (N2-sorption measurements), morphological (TEM), surface chemistry (FTIR) and optical properties (UVDR) was investigated. It was observed that the crystallite size, specific surface area, band gap energy and even photocatalytic activity was affected by the synergism occurring between cavitation effect and the surfactant/titania precursor weight ratio. The study yielded interesting great results that could be considered for further application of ultrasound to tailor mesoporous titania features via sol-gel soft template synthesis, against conventional sol-gel process.


Sign in / Sign up

Export Citation Format

Share Document