mesoporous titania
Recently Published Documents


TOTAL DOCUMENTS

596
(FIVE YEARS 75)

H-INDEX

64
(FIVE YEARS 6)

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 303
Author(s):  
Gunnar Símonarson ◽  
Antiope Lotsari ◽  
Anders E. C. Palmqvist

A low-temperature spray deposition synthesis was developed to prepare locally hexagonally ordered mesoporous titania films with polycrystalline anatase pore walls in an evaporation-induced self-assembly process. The titania film preparation procedure is conducted completely at temperatures below 50 °C. The effects of spray time, film thickness, synthesis time prior to spray deposition, and aging time at high relative humidity after deposition on the atomic arrangement and the mesoorder of the mesoporous titania were studied. We find the crystallite size to depend on both the synthesis time and aging time of the films, where longer times result in larger crystallites. Using the photocatalytic activity of titania, the structure-directing agent is removed with UV radiation at 43–46 °C. The capability of the prepared films to remove the polymer template increased with longer synthesis and aging times due to the increased crystallinity, which increases the photocatalytic efficiency of the titania films. However, with increasingly longer times, the crystallites grow too large for the mesoorder of the pores to be maintained. This work shows that a scalable spray coating method can be used to prepare locally ordered mesoporous polycrystalline titania films by judiciously tuning the synthesis parameters.


Nano Energy ◽  
2021 ◽  
pp. 106615
Author(s):  
Manmatha Mahato ◽  
Jong-Nam Kim ◽  
Rassoul Tabassian ◽  
Araz Rajabi-Abhari ◽  
Ji-Seok Kim ◽  
...  

Author(s):  
Kenny Wyns ◽  
Nick Gys ◽  
Andrea Deibe Varela ◽  
Jeroen Spooren ◽  
Thomas Abo Atia ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1263
Author(s):  
Elvira Mahu ◽  
Cristina Giorgiana Coromelci ◽  
Doina Lutic ◽  
Iuliean Vasile Asaftei ◽  
Liviu Sacarescu ◽  
...  

A mesoporous titania structure has been prepared using the ultrasound-assisted sol-gel technique in order to find out a way to tailor its structure. The TiO2 obtained was compared to the same version of titania but synthesized by a conventional sol-gel method with the objective of understanding the effect of ultrasound in the synthesis process. All synthesis experiments were focused on the preparation of a titania photocatalyst. Thus, the anatase photocatalytic active phase of titania was proven by X-ray diffraction. Additionally, the ultrasonation treatment proved to increase the crystallinity of titania samples, being one of the requirements to having good photocatalytic activity for titania. The influence of surfactant/titania precursor weight ratio on the structural (XRD), textural (N2-sorption measurements), morphological (TEM), surface chemistry (FTIR) and optical properties (UVDR) was investigated. It was observed that the crystallite size, specific surface area, band gap energy and even photocatalytic activity was affected by the synergism occurring between cavitation effect and the surfactant/titania precursor weight ratio. The study yielded interesting great results that could be considered for further application of ultrasound to tailor mesoporous titania features via sol-gel soft template synthesis, against conventional sol-gel process.


2021 ◽  
Vol 7 (1) ◽  
pp. 32-36
Author(s):  
N. F. Jaafar ◽  
N. A. Marfur

Mesoporous titania nanoparticles (MTN) was successfully prepared by microwave-assisted menthod. The performance of MTN was compared with degussa P25 (commercial TiO2) on photocatalytic degradation of 2-chlorophenol (2-CP). Both catalysts were characterized by XRD, FTIR, UV-Vis DRS and surface area analysis. The characterization data indicated that MTN has higher surface area and lower particle size than P25. The 2-CP was successfully degraded completely under UV light irradiation despite of having a slightly higher band-gap value compared with P25. This study demonstrated that MTN shows a good potential as a photocatalyst. 


Sign in / Sign up

Export Citation Format

Share Document