Phase stability and elastic moduli of Cr2Nb by first-principles calculations

1999 ◽  
Vol 7 (1) ◽  
pp. 5-9 ◽  
Author(s):  
Suklyun Hong ◽  
C.L. Fu
Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Jinzhong Tian ◽  
Yuhong Zhao ◽  
Shengjie Ma ◽  
Hua Hou

In present work, the effects of alloying elements X (X = Zn, Zr and Ag) doping on the phase stability, elastic properties, anisotropy and Debye temperature of Al3Li were studied by the first-principles method. Results showed that pure and doped Al3Li can exist and be stable at 0 K. Zn and Ag elements preferentially occupy the Al sites and Zr elements tend to occupy the Li sites. All the Cij obey the mechanical stability criteria, indicating the mechanical stability of these compounds. The overall anisotropy decreases in the following order: Al23Li8Ag > Al3Li > Al23Li8Zn > Al24Li7Zr, which shows that the addition of Zn and Zr has a positive effect on reducing the anisotropy of Al3Li. The shear anisotropic factors for Zn and Zr doped Al3Li are very close to one, meaning that elastic moduli do not strongly depend on different shear planes. For pure and doped Al3Li phase, the transverse sound velocities νt1 and νt2 among the three directions are smaller than the longitudinal sound velocity νl. Moreover, only the addition of Zn is beneficial to increasing the ΘD of Al3Li among the three elements.


2019 ◽  
Vol 9 (5) ◽  
pp. 964 ◽  
Author(s):  
Haopeng Zhang ◽  
Wenbin Liu ◽  
Tingting Lin ◽  
Wenhong Wang ◽  
Guodong Liu

The structural stability and magnetic properties of the cubic and tetragonal phases of Mn3Z (Z = Ga, In, Tl, Ge, Sn, Pb) Heusler alloys are studied by using first-principles calculations. It is found that with the increasing of the atomic radius of Z atom, the more stable phase varies from the cubic to the tetragonal structure. With increasing tetragonal distortion, the magnetic moments of Mn (A/C and B) atoms change in a regular way, which can be traced back to the change of the relative distance and the covalent hybridization between the atoms.


Sign in / Sign up

Export Citation Format

Share Document