The biogenesis of the plant seed oil body: Oleosin protein is synthesised by ER-bound ribosomes

1999 ◽  
Vol 37 (6) ◽  
pp. 481-490 ◽  
Author(s):  
Frédéric Beaudoin ◽  
Dominic J. Lacey ◽  
Johnathan A. Napier
Keyword(s):  
Seed Oil ◽  
Oil Body ◽  
1992 ◽  
Vol 117 (2) ◽  
pp. 327-335 ◽  
Author(s):  
JT Tzen ◽  
AH Huang

Storage triacylglycerols (TAG) in plant seeds are present in small discrete intracellular organelles called oil bodies. An oil body has a matrix of TAG, which is surrounded by phospholipids (PL) and alkaline proteins, termed oleosins. Oil bodies isolated from mature maize (Zea mays) embryos maintained their discreteness, but coalesced after treatment with trypsin but not with phospholipase A2 or C. Phospholipase A2 or C exerted its activity on oil bodies only after the exposed portion of oleosins had been removed by trypsin. Attempts were made to reconstitute oil bodies from their constituents. TAG, either extracted from oil bodies or of a 1:2 molar mixture of triolein and trilinolein, in a dilute buffer were sonicated to produce droplets of sizes similar to those of oil bodies; these droplets were unstable and coalesced rapidly. Addition of oil body PL or dioleoyl phosphatidylcholine, with or without charged stearylamine/stearic acid, or oleosins, to the medium before sonication provided limited stabilization effects to the TAG droplets. High stability was achieved only when the TAG were sonicated with both oil body PL (or dioleoyl phosphatidylcholine) and oleosins of proportions similar to or higher than those in the native oil bodies. These stabilized droplets were similar to the isolated oil bodies in chemical properties, and can be considered as reconstituted oil bodies. Reconstituted oil bodies were also produced from TAG of a 1:2 molar mixture of triolein and trilinolein, dioleoyl phosphatidylcholine, and oleosins from rice (Oryza sativa), wheat (Triticum aestivum), rapeseed (Brassica napus), soybean (Glycine max), or jojoba (Simmondsia chinensis). It is concluded that both oleosins and PL are required to stabilize the oil bodies and that oleosins prevent oil bodies from coalescing by providing steric hindrance. A structural model of an oil body is presented. The current findings on seed oil bodies could be extended to the intracellular storage lipid particles present in diverse organisms.


Author(s):  
Atul Grover ◽  
Sweta Singh ◽  
Abhinav Singh ◽  
Madhu Bala
Keyword(s):  
Seed Oil ◽  

1995 ◽  
Vol 13 (1) ◽  
pp. 72-77 ◽  
Author(s):  
Gijs J. H. van Rooijen ◽  
Maurice M. Motoney

2016 ◽  
Vol 88 (2) ◽  
pp. 228-235 ◽  
Author(s):  
Wei Ma ◽  
Que Kong ◽  
Jenny J. Mantyla ◽  
Yang Yang ◽  
John B. Ohlrogge ◽  
...  

1985 ◽  
Vol 87 (1) ◽  
pp. 7-9 ◽  
Author(s):  
R. G. Patel ◽  
V. S. Patel

2019 ◽  
pp. 1-26
Author(s):  
Qudsia YOUSAFI ◽  
Hafsa Ahmad ALI ◽  
Hamid RASHID ◽  
Muhammad Saad KHAN

Plant oils are very important for domestic and industrial use. Biodiesel can be obtained from plant seed oil. Biodiesel is currently popular and in demand due to the high cost of petroleum and to avoid pollution. It is time to increase plant seed oil production and conduct research to find ways of enhancing its production. We studied two species of oil seed plants, i.e. Ricinus communis and Glycine max, with varying amounts of oil content. Proteins from six categories of enzymes involved in fatty acid biosynthesis were selected for study. The 3D structures were predicted using different structure prediction tools. The structures were validated and selected on the basis of quality factors. The pairs of proteins were compared by pairwise sequence alignment using Clustal W and structural superposition by Chimera Matchmaker. The physiochemical properties were studied by PROTPARAM. In R. communis, eighteen structures were selected from I Tasser, thirteen from Swiss Model, and two from Raptorx. In G. max, twenty structures were selected from I Tasser, nine from Swiss Model, and four from Raptorx. The highest percent identity in pairwise sequence alignment was observed between the two species for biotin carboxylase. Biotin carrier was least identical between these two species. Monogalactosyldiacylglycerol desaturase (FAD5) showed the highest percentage of structural identity between the two species while ER phosphatidate phosphate was least identical. Eight proteins in both species had an instability index below 40. Eight proteins in R. communis and five in G. max were acidic in nature. Fourteen proteins in R. communis and seventeen in G. max were hydrophobic. The aliphatic index of all proteins was above 50 with which conferes good thermal stability.


Sign in / Sign up

Export Citation Format

Share Document