Three-dimensional elasticity solution for bending of functionally graded rectangular plates

Author(s):  
M KASHTALYAN
2009 ◽  
Vol 44 (4) ◽  
pp. 249-261 ◽  
Author(s):  
Y P Xu ◽  
D Zhou

This paper studies the stress and displacement distributions of simply supported functionally graded rectangular plates with internal elastic line supports. The Young's modulus is graded through the thickness following the exponential law and the Poisson's ratio is kept constant. On the basis of three-dimensional elasticity theory, the solutions of displacements and stresses of the plate under static loads, which exactly satisfy the governing differential equations and the simply supported boundary conditions at four edges of the plate, are analytically derived. The reaction forces of the internal elastic line supports are regarded as the unknown external forces acting on the lower surface of the plate. The unknown coefficients in the solutions are then determined by the boundary conditions on the upper and lower surfaces of the plate. Convergence and comparison studies demonstrate the correctness and effectiveness of the proposed method. The effect of variations in Young's modulus on the displacements and stresses of rectangular plates and the effect of internal elastic line supports on the mechanical properties of plates are investigated.


Sign in / Sign up

Export Citation Format

Share Document