Three-dimensional elasticity solution of simply supported functionally graded rectangular plates with internal elastic line supports

2009 ◽  
Vol 44 (4) ◽  
pp. 249-261 ◽  
Author(s):  
Y P Xu ◽  
D Zhou

This paper studies the stress and displacement distributions of simply supported functionally graded rectangular plates with internal elastic line supports. The Young's modulus is graded through the thickness following the exponential law and the Poisson's ratio is kept constant. On the basis of three-dimensional elasticity theory, the solutions of displacements and stresses of the plate under static loads, which exactly satisfy the governing differential equations and the simply supported boundary conditions at four edges of the plate, are analytically derived. The reaction forces of the internal elastic line supports are regarded as the unknown external forces acting on the lower surface of the plate. The unknown coefficients in the solutions are then determined by the boundary conditions on the upper and lower surfaces of the plate. Convergence and comparison studies demonstrate the correctness and effectiveness of the proposed method. The effect of variations in Young's modulus on the displacements and stresses of rectangular plates and the effect of internal elastic line supports on the mechanical properties of plates are investigated.

2016 ◽  
Vol 880 ◽  
pp. 77-82
Author(s):  
Vahid Tahouneh

This paper is motivated by the lack of studies in the technical literature concerning to the three dimensional vibration analysis of thick laminated rectangular plates with continuously graded carbon nanotube-reinforced (CGCNTR) sheets. The formulations are based on the three-dimensional elasticity theory. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The structure is supported by an elastic foundation with Winkler’s (normal) and Pasternak’s (shear) coefficients. The material properties of the functionally graded carbon nanotube reinforced composites are graded along the thickness and estimated through Mori-Tanaka method.


2014 ◽  
Vol 21 (4) ◽  
pp. 571-587 ◽  
Author(s):  
Hamid Reza Saeidi Marzangoo ◽  
Mostafa Jalal

AbstractFree vibration analysis of functionally graded (FG) curved panels integrated with piezoelectric layers under various boundary conditions is studied. A panel with two opposite edges is simply supported, and arbitrary boundary conditions at the other edges are considered. Two different models of material property variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential law distribution of the material properties through the thickness are considered. Based on the three-dimensional theory of elasticity, an approach combining the state space method and the differential quadrature method (DQM) is used. For the simply supported boundary conditions, closed-form solution is given by making use of the Fourier series expansion, and applying the differential quadrature method to the state space formulations along the axial direction, new state equations about state variables at discrete points are obtained for the other cases such as clamped or free-end conditions. Natural frequencies of the hybrid curved panels are presented by solving the eigenfrequency equation, which can be obtained by using edges boundary conditions in this state equation. The results obtained for only FGM shell is verified by comparing the natural frequencies with the results obtained in the literature.


2004 ◽  
Vol 261-263 ◽  
pp. 651-656 ◽  
Author(s):  
Z.S. Shao ◽  
L.F. Fan ◽  
Tie Jun Wang

Analytical solutions of stress fields in functionally graded circular hollow cylinder with finite length subjected to axisymmetric pressure loadings on inner and outer surfaces are presented in this paper. The cylinder is simply supported at its two ends. Young's modulus of the material is assumed to vary continuously in radial direction of the cylinder. Moreover, numerical results of stresses in functionally graded circular hollow cylinder are appeared.


2017 ◽  
Vol 61 (4) ◽  
pp. 309 ◽  
Author(s):  
Vahid Tahouneh

In the present work, vibration characteristics of functionally graded (FG) sandwich rectangular plates reinforced by multiwalled carbon nanotubes (MWCNTs) resting on Pasternak foundation are presented. The response of the elastic medium is formulated by the Winkler/Pasternak model. Modified Halpin-Tsai equation is used to evaluate the Young’s modulus of the MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The mass density and Poisson’s ratio of the MWCNT/phenolic composite are considered based on the rule of mixtures. The proposed sandwich rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the sandwich plates are investigated.


2019 ◽  
Vol 4 (1) ◽  
pp. 258-266
Author(s):  
Anand Prakash ◽  
Shiv Ranjan Kumar ◽  
Rahul Verma

AbstractThe engine part is one of the major sources of vibration of agricultural machinery such as a tractor. Therefore, vibration analysis of agricultural engine part will improve the engine efficiency and agricultural performance. The main objective of present work was to study the dynamic behavior of functionally graded (FG) structural material for the application as cylinder liner as agricultural engine part. The vibration analysis of functionally graded (FG) beam was performed using Finite Element Method (FEM). A typical simply-supported FG beam was modeled in COMSOL Software, where the upper portion of the beam was alumina and the lower portion was steel. The basic properties of material such as Young’s Modulus and mass density were varied along the thickness according to the power law. The boundary conditions were also modeled, and parametric study was carried out with mass density and young’s modulus. Eigen value problem was solved and in turn natural frequency and mode shapes were obtained. The frequency ratio was calculated and compared for various boundary conditions. The finding of the results indicated that when power exponent was increased from 0 to 5, the nonlinear reduction in frequency was occurred but when power exponent was increased from 5 to 10, linear reduction in frequency was occurred. Also, the increase in power exponent caused the increase in frequency for Young’s Modulus ratio of 0.25 and 0.5, decrease in frequency for Young’s Modulus ratio of 2 and 4 and no change occurred for Young’s Modulus ratio of 1. The first non-dimensional frequency for Clamped-Clamped boundary condition was comparatively more than other boundary conditions and lowest frequency is obtained for Clamped –Free boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document