Distribution characteristics of dissolved organic carbon in annular wetland soil-water solutions through soil profiles in the Sanjiang Plain, Northeast China

2007 ◽  
Vol 19 (9) ◽  
pp. 1074-1078 ◽  
Author(s):  
Min XI ◽  
Xian-guo LU ◽  
Yue LI ◽  
Fan-long KONG
2014 ◽  
Vol 692 ◽  
pp. 70-73 ◽  
Author(s):  
Jian Bo Wang ◽  
Xiao Ling Fu ◽  
Hai Xiu Zhong ◽  
Ji Feng Wang ◽  
Hong Wei Ni

Response of soil respiration in temperate wetlands in northeast China was studied from June 2009 to September 2011. Li-Cor 6400 infrared gas analyzer connected with a chamber was used to quantify the soil respiration. Results showed that soil respiration displayed a distinct seasonal pattern, with higher values observed in midsummer and lower values in spring and autumn. Furthermore, soil respiration exhibited a significant inter-annual variation. In addition, soil respiration presented significant positive exponential relationships with soil temperature. Whereas, significant exponential decay relationships between soil respiration rate and soil water content was found. In this ecosystem, soil temperature, soil water content and plant phenology together control soil respiration.


Author(s):  
Luoman Pu ◽  
Jiuchun Yang ◽  
Lingxue Yu ◽  
Changsheng Xiong ◽  
Fengqin Yan ◽  
...  

Crop potential yields in cropland are the essential reflection of the utilization of cropland resources. The changes of the quantity, quality, and spatial distribution of cropland will directly affect the crop potential yields, so it is very crucial to simulate future cropland distribution and predict crop potential yields to ensure the future food security. In the present study, the Cellular Automata (CA)-Markov model was employed to simulate land-use changes in Northeast China during 2015–2050. Then, the Global Agro-ecological Zones (GAEZ) model was used to predict maize potential yields in Northeast China in 2050, and the spatio-temporal changes of maize potential yields during 2015–2050 were explored. The results were the following. (1) The woodland and grassland decreased by 5.13 million ha and 1.74 million ha respectively in Northeast China from 2015 to 2050, which were mainly converted into unused land. Most of the dryland was converted to paddy field and built-up land. (2) In 2050, the total maize potential production and average potential yield in Northeast China were 218.09 million tonnes and 6880.59 kg/ha. Thirteen prefecture-level cities had maize potential production of more than 7 million tonnes, and 11 cities had maize potential yields of more than 8000 kg/ha. (3) During 2015–2050, the total maize potential production and average yield decreased by around 23 million tonnes and 700 kg/ha in Northeast China, respectively. (4) The maize potential production increased in 15 cities located in the plain areas over the 35 years. The potential yields increased in only nine cities, which were mainly located in the Sanjiang Plain and the southeastern regions. The results highlight the importance of coping with the future land-use changes actively, maintaining the balance of farmland occupation and compensation, improving the cropland quality, and ensuring food security in Northeast China.


Soil Research ◽  
2008 ◽  
Vol 46 (3) ◽  
pp. 273 ◽  
Author(s):  
Xiaobin Jin ◽  
Shenmin Wang ◽  
Yinkang Zhou

The Sanjiang Plain of north-east China is presently the second largest freshwater marsh in China. The drainage and use of marshes for agricultural fields occurred in the past 50 years, resulting in the increase in cultivated land from about 2.9 × 108 m2 in 1893 to 4.57 × 1010 m2 in 1994. Under human disturbance in the past half century, the environment in Sanjiang Plain has had significant change. We hypothesised that environmental factors such as soil moisture, soil temperature, and soil N levels affect the rates of soil organic C mineralisation and the nature of the controls on microbial CO2 production to change with depth through the soil profile in the freshwater marsh in the Sanjiang Plain. In a series of experiments, we measured the influence of soil temperature, soil water content, and nitrogen additions on soil microbial CO2 production rates. The results showed that Q10 values (the factor by which the CO2 production rate increases when the temperature is increased by 10°C) significantly increased with soil depth through the soil profile (P < 0.05). The average Q10 values for the surface soils were 2.7 (0–0.2 m), significantly lower than that (average Q10 values 3.3) for the subsurface samples (0.2–0.6 m) (P < 0.05), indicating that C mineralisation rates were more sensitive to temperature in subsurface soil horizons than in surface horizons. The maximum respiration rate was measured at 60% water hold capacity for each sample. The quadratic equation function adequately describes the relationship between soil respiration and soil water content, and the R2 values were > 0.80. The sensitivity of microbial CO2 production rate response to soil water content for surface soils (0–0.2 m) was slightly lower than for subsurface soils (0.2–0.6 m). The responses of actual soil respiration rates to nitrogen fertilisation were different for surface and subsurface soils. In the surface soils (0–0.2 m), the addition of N caused a slight decreased in respiration rates compared with the control, whereas, in the subsurface soils (0.2–0.6 m), the addition of N tended to increase microbial CO2 production rates, and the addition of 10 µg N/g soil treatment caused twice the increase in C mineralisation rates of the control. Our results suggested that the responses of microbial CO2 production to changes in soil moisture, soil temperature, and soil N levels varied with soil depth through the profile, and subsurface soil organic C was more sensitive to temperature increase and nitrogen inputs in the freshwater marsh of the Sanjiang Plain.


2015 ◽  
Vol 75 ◽  
pp. 16-23 ◽  
Author(s):  
Xiaoyan Zhu ◽  
Changchun Song ◽  
Christopher Martin Swarzenski ◽  
Yuedong Guo ◽  
Xinhou Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document