q10 values
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 5)

H-INDEX

18
(FIVE YEARS 1)

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 239
Author(s):  
Jui-Chu Yu ◽  
Po-Neng Chiang ◽  
Yen-Jen Lai ◽  
Ming-Jer Tsai ◽  
Ya-Nan Wang

Soil respiration represents the second largest carbon flux, next to photosynthesis of the terrestrial biosphere, and thus plays a dual role in regional and global carbon cycles. However, soil respiration in Asian monsoon forests with high rainfall has rarely been studied. In this study, we continuously measured soil respiration using a 12-channel automated chamber system in a 61-year-old Japanese cedar forest in central Taiwan with annual rainfall greater than 2500 mm. A 4-year (2011–2014) continuous half-hourly dataset was used to quantify the influences of soil temperature and moisture, especially rainfall events, on both total soil respiration (Rs) and heterotrophic respiration (Rh). The annual mean Rs was approximately 10.8 t C ha−1 (ranging from 10.7 to 10.9) t C ha−1, with Rh contributing approximately 74.6% (ranging from 71.7% to 80.2%). Large seasonal variations in both Rs and Rh were primarily controlled by soil temperature. Over 45.8% of total annual rainfall amounts were provided by strong rainfall events (over 50 mm), and over 40% of rainfall events occurred during summers between 2012 and 2014. These strong rainfall events caused rainwater to enter soil pores and cover the soil surface, which resulted in limited soil microorganism activity and, consequently, restricted CO2 production. The mean Q10 values were 2.38 (ranging from 1.77 to 2.65) and 2.02 (ranging from 1.71 to 2.34) for Rs and Rh, respectively. The Q10 values in this study, which were lower than in global forest ecosystems, may imply that the interannual Rs values observed in this study that were caused by high rainfall were less temperature-dependent than the Rs levels in global forest ecosystems. Both Rs and Rh were negatively correlated with soil moisture, which indicated that the soil moisture levels in the studied forest were usually under saturated conditions. These results also provide the lack of data for respiration in the Asian monsoon region under high-rainfall conditions.


2020 ◽  
Vol 28 (2) ◽  
pp. 175-180
Author(s):  
V. V. Kuz’mina ◽  
E. Y. Chornaya ◽  
E. A. Kulivatskaya ◽  
G. V. Zolotareva ◽  
V. A. Sheptitskiy

The effects of crystalline and amorphous phenol (0.5 mmol/L) on the characteristics of glycosidases, as well as casein-lytic and hemoglobin-lytic peptidases, which function in the whole body of chironomid larvae Chironomus sp. were studied. Crystalline phenol decreased the activity of glycosidases in comparison to the control in the temperature range 0–50 ºС, amorphous phenol – in the temperature range 0–70 ºС. The temperature optimum of glycosidases in whole body of chironomid larvae in control and experiment corresponds to 50 ºС. The activity of glycosidases in comparison to the control decreased in the pH range 5–11 (to a greater extent in the case of the lower fraction). Amorphous phenol increased the activity of casein-lytic peptidases in comparison to the control in the temperature range of 30–50 ºС, hemoglobin-lytic peptidases – in the temperature range of 0–60 ºС. The degree of the increase of enzyme activity in the temperature optimum zone of casein-lytic and hemoglobin-lytic peptidases was different: the level of enzyme activity in the experiment was higher than in the control by 2.3 and 1.8 times, respectively. The temperature optimum of the studied peptidases of chironomid larvae, regardless of the experimental conditions, corresponds to 40 °C. Crystalline phenol did not actually affect the Q10 values of glycosidases in the temperature range 0–50 °C. Amorphous phenol decreased the Q10 values at a temperature of 40–50 °C. The Q10 values of casein-lytic peptidases increased in most cases, the Q10 values of hemoglobin-lytic peptidases decreased in the presence of amorphous phenol. The process of protein hydrolysis was characterized by a break in the Arrhenius plot at 20 °C. The values of Еact in the range 0–20 °С were lower than in the zone of higher temperatures. The Еact values of the process of casein hydrolysis by peptidases of all tissues of chironomid larvae in the presence of amorphous phenol in both temperature zones increased. The Еact values of the process of hemoglobin hydrolysis by peptidases of all tissues of chironomid larvae in the presence of amorphous phenol in both temperature zones decreased. The Еact values of the process of starch hydrolysis in the presence of crystalline phenol decreased. The amorphous phenol changed the Еact values in different directions. They slightly increased in the presence of the phenol upper fraction, but they decreased in the presence of the phenol lower fraction. The data obtained indicate a significant effect of crystalline and amorphous phenol not only on activity, but also on the characteristics of peptidases and glycosidases that function in the whole body of chironomid larvae.


2020 ◽  
Vol 24 ◽  
pp. 233121652093977
Author(s):  
Emilia Tarnowska ◽  
Andrzej Wicher ◽  
Brian C. J. Moore

The efferent system may control the gain of the cochlea and thereby influence frequency selectivity. This effect can be assessed using contralateral stimulation (CS) applied to the ear opposite to that used to assess frequency selectivity. The effect of CS may be stronger for musicians than for nonmusicians. To assess whether this was the case, psychophysical tuning curves (PTCs) were compared for 12 musicians and 12 nonmusicians. The PTCs were measured with and without a 60-dB sound pressure level (SPL) pink-noise CS, using signal frequencies of 2 and 4 kHz. The sharpness of the PTCs was quantified using the measure Q10, the signal frequency divided by the PTC bandwidth measured 10 dB above the level at the tip. Q10 values were lower in the presence of the CS, but this effect did not differ significantly for musicians and nonmusicians. The main effect of group (musicians vs. nonmusicians) on the Q10 values was not significant. Overall, these results do not support the idea that musicianship enhances contralateral efferent gain control as measured using the effect of CS on PTCs.


2019 ◽  
Vol 41 (6) ◽  
pp. 865-878 ◽  
Author(s):  
Abigail S Tyrell ◽  
Nicholas S Fisher

Abstract Because seawater temperature is correlated with viscosity, temperature changes may impact small zooplankton through a mechanical pathway, separately from any thermally-induced effects on metabolism. We evaluated both viscous and thermal effects on copepod feeding in experiments where viscosity was manipulated separately from temperature using a non-toxic polymer. Two copepod species, Acartia tonsa and Parvocalanus crassirostris, feeding on two monoalgal diets (a diatom and a dinoflagellate) were compared. At constant temperature, increase in viscosity nearly always reduced feeding; at constant viscosity, changes in temperature had no effect on feeding. The effects of viscosity and temperature were more pronounced for the diatom than the flagellate prey. Overall, reductions in zooplankton feeding at cold temperatures can be explained primarily by the mechanical effect of viscosity. Q10 values for copepod feeding (1.0–7.9), calculated from the present data and from the literature, were generally higher and more variable than Q10 values from the literature for copepod respiration (1.5–3.1) indicating that, at cold temperatures, feeding is more dramatically suppressed than metabolism. We conclude that (i) high viscosity may inhibit copepod feeding, and (ii) this viscous effect on feeding (rather than a thermal effect on metabolism) may influence the cold-temperature bounds of zooplankton populations.


2018 ◽  
Vol 15 (17) ◽  
pp. 5329-5341 ◽  
Author(s):  
Jiguang Feng ◽  
Jingsheng Wang ◽  
Yanjun Song ◽  
Biao Zhu

Abstract. Soil respiration (Rs), a key process in the terrestrial carbon cycle, is very sensitive to climate change. In this study, we synthesized 54 measurements of annual Rs and 171 estimates of Q10 value (the temperature sensitivity of soil respiration) in grasslands across China. We quantitatively analyzed their spatial patterns and controlling factors in five grassland types, including temperate typical steppe, temperate meadow steppe, temperate desert steppe, alpine grassland, and warm, tropical grassland. Results showed that the mean (±SE) annual Rs was 582.0±57.9 g C m−2 yr−1 across Chinese grasslands. Annual Rs significantly differed among grassland types, and was positively correlated with mean annual temperature, mean annual precipitation, soil temperature, soil moisture, soil organic carbon content, and aboveground biomass, but negatively correlated with soil pH (p<0.05). Among these factors, mean annual precipitation was the primary factor controlling the variation of annual Rs among grassland types. Based on the overall data across Chinese grasslands, the Q10 values ranged from 1.03 to 8.13, with a mean (±SE) of 2.60±0.08. Moreover, the Q10 values varied largely within and among grassland types and soil temperature measurement depths. Among grassland types, the highest Q10 derived by soil temperature at a depth of 5 cm occurred in alpine grasslands. In addition, the seasonal variation of soil respiration in Chinese grasslands generally cannot be explained well by soil temperature using the van't Hoff equation. Overall, our findings suggest that the combined factors of soil temperature and moisture would better predict soil respiration in arid and semi-arid regions, highlight the importance of precipitation in controlling soil respiration in grasslands, and imply that alpine grasslands in China might release more carbon dioxide to the atmosphere under climate warming.


2018 ◽  
Vol 15 (12) ◽  
pp. 3659-3671 ◽  
Author(s):  
Katherine Todd-Brown ◽  
Bin Zheng ◽  
Thomas W. Crowther

Abstract. The feedback between planetary warming and soil carbon loss has been the focus of considerable scientific attention in recent decades, due to its potential to accelerate anthropogenic climate change. The soil carbon temperature sensitivity is traditionally estimated from short-term respiration measurements – either from laboratory incubations that are artificially manipulated or from field measurements that cannot distinguish between plant and microbial respiration. To address these limitations of previous approaches, we developed a new method to estimate soil temperature sensitivity (Q10) of soil carbon directly from warming-induced changes in soil carbon stocks measured in 36 field experiments across the world. Variations in warming magnitude and control organic carbon percentage explained much of field-warmed organic carbon percentage (R2 = 0.96), revealing Q10 across sites of 2.2 [1.6, 2.7] 95 % confidence interval (CI). When these field-derived Q10 values were extrapolated over the 21st century using a post hoc correction of 20 Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth system model outputs, the multi-model mean soil carbon stock changes shifted from the previous value of 88 ± 153 Pg carbon (weighted mean ± 1 SD) to 19 ± 155 Pg carbon with a Q10-driven 95 % CI of 248 ± 191 to −95 ± 209 Pg carbon. On average, incorporating the field-derived Q10 values into Earth system model simulations led to reductions in the projected amount of carbon sequestered in the soil over the 21st century. However, the considerable parameter uncertainty led to extremely high variability in soil carbon stock projections within each model; intra-model uncertainty driven by the field-derived Q10 was as great as that between model variation. This study demonstrates that data integration should capture the variation of the system, as well as mean trends.


2018 ◽  
Author(s):  
Katherine Todd-Brown ◽  
Bin Zheng ◽  
Thomas Crowther

Abstract. The feedback between planetary warming and soil carbon loss has been the focus of considerable scientific attention in recent decades, due to its potential to accelerate anthropogenic climate change. The soil carbon temperature sensitivity is traditionally estimated from short-term respiration measurements – either from laboratory incubations that are artificially manipulated, or field measurements that cannot distinguish between plant and microbial respiration. To address these limitations of previous approaches, we developed a new method to estimate temperature sensitivity (Q10) of soil carbon directly from warming-induced changes in soil carbon stocks measured in 36 field experiments across the world. Variations in warming magnitude and control organic carbon percentage explained much of field-warmed organic carbon percentage (R2 = 0.96), revealing Q10 across sites of 2.2, [1.6, 2.7] 95 % Confidence Interval (CI). When these field-derived Q10 values were extrapolated over the 21st century using a post-hoc correction of 20 CMIP5 Earth system model outputs, the multi-model mean soil carbon stock changes shifted from the previous value of 83 ± 156 Pg-carbon (weighted mean ± 1 SD), to 16 ± 156 Pg-carbon with a Q10 driven 95 % CI of 245 ± 194 to −99 ± 208 Pg-carbon. On average, incorporating the field-derived Q10 values into Earth system model simulations led to reductions in the projected amount of carbon sequestered in the soil over the 21st century. However, the considerable parameter uncertainty led to extremely high variability in soil carbon stock projections within each model; intra-model uncertainty driven by the measured Q10 was as great as that between model variation. This study demonstrates that data integration may not improve model certainty, but instead should strive to capture the variation of the system as well as mean trends.


2018 ◽  
Author(s):  
Aurore Kaisermann ◽  
Jérôme Ogée ◽  
Joana Sauze ◽  
Steven Wohl ◽  
Sam P. Jones ◽  
...  

Abstract. Soils both emit and consume the trace gas carbonyl sulphide (COS) leading to a soil-air COS exchange rate that is the net result of two opposing fluxes. Partitioning these two gross fluxes and understanding their drivers are necessary to estimate the contribution of soils to the current and future atmospheric budget of COS. Previous efforts to disentangle the gross COS fluxes from soils have used flux measurements on air-dried soils as a proxy for the COS emission rates of moist soils. However, this method implicitly assumes that COS uptake becomes negligible and COS emission remains steady while soils are drying. We tested this assumption by estimating simultaneously the soil COS sources and sinks and their temperature sensitivity (Q10) from soil-air COS flux measurements on fresh soils at different COS concentrations and two soil temperatures. Measurements were performed on 27 European soils from different biomes and land use types in order to obtain a large range of physical-chemical properties and identify the drivers of COS consumption and production rates. We found that COS production rates from moist and air-dried soils were not significantly different for a given soil and that the COS production rates had Q10 values (3.96 ± 3.94) that were larger and more variable than the Q10 for COS consumption (1.17 ± 0.27). COS production generally contributed less to the net flux that was dominated by gross COS consumption but this contribution of COS production increased rapidly at higher temperature, lower soil moisture and lower COS concentrations. Consequently, measurements at higher COS concentrations (viz. 1000 ppt) always increased the robustness of COS consumption estimates. Across the range of biomes and land use types, COS production rates co-varied with total soil nitrogen (r = 0.68, P < 0.05) and the first-order COS uptake rate co-varied most with microbial N content (r = 0.64, P < 0.05) providing new insights on how to upscale the contribution of soils to the global COS atmospheric budget.


Sign in / Sign up

Export Citation Format

Share Document