A Split-Characteristic Finite Element Model for 1-D Unsteady Flows

2007 ◽  
Vol 19 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Yi-lin Zhou ◽  
Hong-wu Tang ◽  
Xiao-hua Liu
1997 ◽  
Vol 05 (04) ◽  
pp. 383-402
Author(s):  
Tony W. H. Sheu ◽  
C. C. Fang

A hyperbolic equation is considered for the propagation of pressure disturbance waves in layered fluids having different fluid properties. For acoustic problems of this sort, the characteristic finite element model alone does not suffice to ensure prediction of the monotonic wave profile across fluids having different properties. A flux corrected transport solution algorithm is intended for incorporation into the underlying Taylor–Galerkin finite element framework. The advantage of this finite element approach, in addition to permitting oscillation-free solutions, is that it avoids the necessity of dealing with medium discontinuity. As an analysis tool, the proposed monotonic finite element model has been intensively verified through problems which are amenable to analytic solutions. In modeling wave propagation in layered fluids, we have investigated the influence of the degree of medium change on the finite element solutions. Also, different finite element solutions are considered to show the superiority of using the flux corrected transport Taylor–Galerkin finite element model.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document