The Effect of Oil Cavity Depth on Temperature Field in Heavy Hydrostatic Thrust Bearing

2011 ◽  
Vol 23 (5) ◽  
pp. 676-680 ◽  
Author(s):  
Jun-peng Shao ◽  
Chun-xi Dai ◽  
Yan-qin Zhang ◽  
Xiao-dong Yu ◽  
Xiao-qiu Xu ◽  
...  
2009 ◽  
Vol 419-420 ◽  
pp. 141-144 ◽  
Author(s):  
Xiao Dong Yu ◽  
Xiu Li Meng ◽  
Bo Wu ◽  
Jun Peng Shao ◽  
Yan Qin Zhang ◽  
...  

In order to solve the thermal deformation of the hydrostatic thrust bearing in the heavy equipment, a simulation research concerning temperature field of multi-pad hydrostatic thrust bearing having circular cavities was described. The Finite Volume Method of Fluent has been used to compute three-dimensional temperature field of gap fluid between the rotation worktable and base. This study theoretically analyzes the influence of cavity radius and cavity depth on the bearing temperature performance according to computational fluid dynamics and lubricating theory. It has revealed its temperature distribution law. The simulation results indicate that an improved characteristic can be gotten from a circular cavity hydrostatic thrust bearing, oil cavity temperature decreases by gradually with cavity radius enhancing, oil cavity temperature decreases by gradually with cavity depth. Through this method, the safety of a hydrostatic thrust bearing having circular cavities multi-pad can be forecasted, and the optimal design of such products can be achieved, so it can provide reasonable data for design and lubrication and experience and thermal deformation computation for hydrostatic thrust bearing in the heavy equipment.


2014 ◽  
Vol 494-495 ◽  
pp. 554-557
Author(s):  
Yong Hai Li ◽  
Shi Bo Liu ◽  
Rong Kui Yao ◽  
Jian Wang ◽  
Ning Yang ◽  
...  

In order to solve thermal deformation, the finite element numerical simulation of two kind of tilting pad thrust bearing is made for the same pad surface, and thermal deformation is made to analyze comparatively. The results show that the temperature field, the deformation field and the values of pad are similar for two different supported thrust bearing (point, line support) under the same operating condition. The pad temperature and deformation will increase with the increasing of pv values. According to the calculation conditions, the temperature field rose about 1°C, and the thermal deflection increased 0.002mm with pv value increased by 10%.


2013 ◽  
Vol 274 ◽  
pp. 132-135 ◽  
Author(s):  
Yan Qin Zhang ◽  
Rui Li ◽  
Chun Xi Dai ◽  
Jun Peng Shao ◽  
Xiao Dong Yang ◽  
...  

With heavy NC machine tool is widely used in many oil pad round guide hydrostatic bearing as the research object, in the under condition of variable viscosity, establish oil film viscosity-temperature equation. Adopt finite volume method, simulation the hydrostatic bearing internal fluid temperature field under different flow rates on the speed of 6R / min. Numerical simulation hydrostatic thrust bearing oil film temperature field, can find a general high temperature region, and then take effective control temperature. It can achieve the hydrostatic thrust bearing oil film temperature field prediction for engineering practical oil chamber structure, offer the theoretical foundation for optimization design.


2011 ◽  
Vol 121-126 ◽  
pp. 3477-3481
Author(s):  
Xiao Dong Yu ◽  
Xiu Li Meng ◽  
Bo Wu ◽  
Chun Li Gao ◽  
Zhi Xin Qiu ◽  
...  

A simulation research concerning temperature field of hydrostatic thrust bearing having annular cavities multi-pad was described in order to solve the thermal deformation of the hydrostatic thrust bearing with annular cavity multi-pad in the heavy CNC equipment. The Finite Volume Method of CFX has been used to compute three-dimensional temperature field of gap fluid between the rotation worktable and base. This study theoretically analyzes the influence of rotating velocity on the bearing temperature performance according to computational fluid dynamics and lubricating theory. It has revealed its temperature distribution law. The simulation results indicate that an improved characteristic will be affected by rotating velocity easily, and oil cavity temperature increases by gradually with rotating velocity enhancing. Through this method, the safety of a hydrostatic thrust bearing having annular cavities multi-pad can be forecasted, and the optimal design of such products can be achieved, so it can provide reasonable data for design, lubrication, experience and thermal deformation computation for hydrostatic thrust bearing in the heavy CNC equipment.


2013 ◽  
Author(s):  
Xiaodong Yu ◽  
◽  
Xv Fu ◽  
Xiuli Meng ◽  
Dan Liu ◽  
...  

2011 ◽  
Vol 239-242 ◽  
pp. 2703-2706
Author(s):  
Jun Peng Shao ◽  
Xiao Dong Yang ◽  
Yun Fei Wang ◽  
Xiao Qiu Xu ◽  
Yan Qin Zhang ◽  
...  

Based on heat transfer theory, thermodynamics steady state equation of hydrostatic bearing, thermal mathematical model of hydrostatic bearing and boundary condition of numerical simulation is established. Temperature field distribution of hydrostatic bearing at different velocity is numerical simulated. Regularity of the influence of velocity on temperature field of heavy hydrostatic thrust bearing is revealed. The results show that, velocity impacted a significant influence on heat transfer and temperature field distribution of hydrostatic bearing. Average temperature of workbench steadily declined as velocity increasing, while average temperature of base gradually increased; both of them emerged serious heat concentration, but the cooling situation of workbench is better than base. The numerical simulation results could provide theoretical basis for temperature control scheme design which will improve the stability and reliability during hydrostatic bearing operation.


2018 ◽  
Vol 70 (7) ◽  
pp. 1251-1257
Author(s):  
Xibing Li ◽  
Weixiang Li ◽  
Xueyong Chen ◽  
Ming Li ◽  
Huayun Chen ◽  
...  

Purpose The purpose of this paper is to examine the effect of application of a heat pipe in an aspect of hydrostatic thrust bearings on thermal balance and deformation and the role of this application in increasing the rotating speed of a workbench. Design/methodology/approach Numerical simulations of oil film temperature field, the temperature field and thermal deformation of the bearing’s workbench and base were performed by finite element analysis (FEA) software for both the traditional hydrostatic thrust bearings and the heat pipe ones. Findings Oil pad and workbench of the hydrostatic thrust bearings are fabricated with a heat pipe cooling structure, which can take away most of the heat generated by shearing of the oil film, control the temperature rise and thermal deformation of the hydrostatic thrust bearing effectively, avoid the dry friction phenomenon and finally improve the processing quality of equipment. Originality/value The heat pipe hydrostatic thrust bearings could control the temperature rise and thermal deformation of the hydrostatic thrust bearing effectively, avoid the dry friction phenomenon and improve the processing quality of equipment.


2013 ◽  
Author(s):  
Xiaodong Yu ◽  
◽  
Xv Fu ◽  
Xiuli Meng ◽  
Dan Liu ◽  
...  

2014 ◽  
Vol 7 (4) ◽  
pp. 329-336
Author(s):  
Xiaodong Yu ◽  
Qihui Zhou ◽  
Xiuli Meng ◽  
Huanhuan Li ◽  
Dan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document