Research on Temperature Field Distribution of Heavy Hydrostatic Thrust Bearing Rotation-Workbench at Different Rotating Velocity

2011 ◽  
Vol 239-242 ◽  
pp. 2703-2706
Author(s):  
Jun Peng Shao ◽  
Xiao Dong Yang ◽  
Yun Fei Wang ◽  
Xiao Qiu Xu ◽  
Yan Qin Zhang ◽  
...  

Based on heat transfer theory, thermodynamics steady state equation of hydrostatic bearing, thermal mathematical model of hydrostatic bearing and boundary condition of numerical simulation is established. Temperature field distribution of hydrostatic bearing at different velocity is numerical simulated. Regularity of the influence of velocity on temperature field of heavy hydrostatic thrust bearing is revealed. The results show that, velocity impacted a significant influence on heat transfer and temperature field distribution of hydrostatic bearing. Average temperature of workbench steadily declined as velocity increasing, while average temperature of base gradually increased; both of them emerged serious heat concentration, but the cooling situation of workbench is better than base. The numerical simulation results could provide theoretical basis for temperature control scheme design which will improve the stability and reliability during hydrostatic bearing operation.

2014 ◽  
Vol 912-914 ◽  
pp. 715-722
Author(s):  
Yi Hui Guo ◽  
Ming Tu Ma ◽  
Yi Sheng Zhang ◽  
Dian Wu Zhou ◽  
Lei Feng Song

LS-DYNA software was adopted to conduct research of numerical simulation on hot stamping of front bumper to calculate the temperature field distribution, stress field distribution, FLD figure and etc. of parts in the course of hot stamping so as to predict and analyze the formability of parts. ProCAST software was employed to conduct research of numerical simulation on solid quenching course concerning hot stamping to calculate temperature field distribution of tools and component of multiple stamping cycles; Based on the simulation,the hot stamping mould was developed,and the front bumper components of hot forming were stamped, Compared the test results with the simulation, both the results coincide basically with same variation trend .Results obtain from numerical simulation can provide significant reference value to hot stamping part design, formability predication and tools cooling channel system design.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3397 ◽  
Author(s):  
Lan Xiong ◽  
Yonghui Chen ◽  
Yang Jiao ◽  
Jie Wang ◽  
Xiao Hu

The reliability and service life of power cables is closely related to the cable ampacity and temperature rise. Therefore, studying the temperature field distribution and the cable ampacity is helpful to improve the construction guidelines of cable manufacturers. Taking a 8.7/15 kV YJV 1 × 400 XLPE three-loop power cable as the research object, cable temperature is calculated by IEC-60287 thermal circuit method and numerical simulation method, respectively. The results show that the numerical simulation method is more in line with the actual measured temperature, and the relative error is only 0.32% compared with the actual measured temperature. The temperature field and air velocity field of cluster cables with different laying methods are analyzed by finite element method. The corresponding cable ampacity are calculated by secant method. The results show that when the cable is laid at the bottom of the cable trench, the cable current is 420 A, which is 87.5% of the regular laying. Under irregular laying mode, the temperature of cable is higher than that of regular laying mode and the cable ampacity is lower than that of regular laying mode. At the same time, a multiparameter online monitoring system is developed to online monitor the temperature, water level and smoke concentration of the cable.


2011 ◽  
Vol 383-390 ◽  
pp. 6621-6625
Author(s):  
Chang Sheng Guan ◽  
Zhao Wan

In order to provides the theory basis for the optimization design of ground source heat pump underground U-shaped buried tube, ANSYS software was used to simulate the temperature field distribution of GSHP buried tube summer cooling process. The dynamic simulation was base on analyzing the GSHP heat exchanger unsteady heat transfer model. Comparing the temperature field distribution radius in different soil heat transfer rate, the simulation results show that the buried tube heat transfer efficiency increases with soil coefficient of thermal conductivity, soil hot effect radius increased over time and tend to be gentle.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 97
Author(s):  
Yongchun Yan ◽  
Lixin Zhang ◽  
Xiao Ma ◽  
Huan Wang ◽  
Wendong Wang ◽  
...  

The distribution of heating gun ends plays a decisive role in the sidewall properties of finished rotomolded products. To obtain the optimal distribution of the end face of a rotational molding heating gun, the temperature response of the end-face mold under heating gun heating was investigated, and an analysis method based on numerical simulation is proposed. The FDS (fire dynamics simulator) was used to construct a heating model of the heating gun, simulate and obtain a heatmap of the temperature field distribution of a heating gun of Φ30–70 mm, and determine the optimal diameter and heating distance of the heating gun. ANSYS was used to establish the thermal response model of the heat-affected mold, which was combined with the mold structure and thermophysical properties of steel. A temperature field distribution on the inner wall surface of Φ30, Φ50, and Φ70 mm heating guns when heating at each diameter of the end face was obtained and the distribution position of the end face of each diameter heating gun was determined. ANSYS was used to establish the thermal response model of the end-face mold and obtain the temperature field distribution of the inner wall surface of the end-face mold. The size of the heat-affected area of each diameter heating gun was combined, the end-face heating gun distribution was optimized, and the optimal heating gun end-face distribution was obtained. An experimental platform was built, and a validation experiment was set up. Through the analysis and processing of the data of three experiments, the temperature variation curve of each diameter on the inner surface of the end-face mold was obtained. We compare and analyze the simulation and experimental results to determine the feasibility of the FDS + ANSYS method and the correctness and accuracy of the simulation model and the results.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Liu Chen ◽  
Yujie Chu ◽  
Yu Zhang ◽  
Fei Han ◽  
Jie Zhang

The study of fluid-heat coupling in deep fractured surrounding rock is the basis of design, safety, and extraction of geothermal energy of deep underground spaces. The heat transfer and fractured media seepage theories were employed to establish a three-dimensional unsteady model for fluid-heat coupling heat transfer in fractured surrounding rock. Using COMSOL multiphysics simulation software, the temperature field of the fractured surrounding rock was determined. Furthermore, the influences of ventilation time, Darcy’s velocity, fracture aperture, and thermal conductivity coefficient of the surrounding rock on the fractured surrounding rock temperature field distribution were investigated. The results of the numerical simulation show that the ventilation time and fracture have a major impact on the temperature field distribution of the fractured surrounding rock. As ventilation time is 200 days, an average water temperature in centerline of the fracture decreases 9.4 K as Darcy’s velocity increased from 3e-4m/s to 2e-3m/s. As ventilation time is 200 days, an average water temperature in centerline of the fracture decreases 5.3 K as fracture aperture increased from 3 mm to 9 mm. A set of experimental devices for fluid-heat coupling heat transfer in surrounding rock with a single fracture was designed and built to validate the numerical simulation results. Numerical simulation results are, in general, in agreement with the experimental results.


2016 ◽  
Vol 54 (3) ◽  
pp. 366
Author(s):  
Doan Tat Khoa

To discuss the effect of temperature field distribution on the curvature change and layer thickness of thin-wall parts, the numerical simulation and experimental was studied. The numerical results showed that the molten pool temperature of the thin-wall increases with the layer number, and the molten pool temperature of thin-wall cylinders were increases when decrease curvature radius; the rules of laser power changing with the layer number and curvature in the processing of the thin-wall blade can be obtained when keeping molten pool temperature stable. According to the numerical results, the thin-wall blades were fabricated by experiments. The experimental results showed that the excessive build-up occurred and unevenness thickness layer at small radius corner with constant laser power because of the increase of energy density at corners, with varied laser power is more uniform than the constant laser power, which is in agreement with the numerical simulation.


Author(s):  
Jie Li ◽  
Yanxiong Zhang ◽  
Xiaoyan Wang ◽  
Jialing Gu ◽  
Cheng Chen ◽  
...  

The instability of the temperature field distribution in clutch friction pair tends to increase exponentially with time when the relative velocity is greater than a certain critical value, which indicates the system enters a state of thermoelastic instability. During high-speed frictional sliding at a high temperature and high pressure, thermoelastic instability will generate local high temperature on friction pair and then cause high-frequency vibration, warping, fatigue fracture, and so on. With the aim of studying the problems arising from local hot spots and the mechanism behind the characteristics of temperature field in friction pair, a thermoelastic finite element analysis model was established for friction pair of heavy-duty vehicle clutch in this paper. The characteristics of thermoelastic stress and temperature distribution under different conditions were obtained by simulation analysis where different values were applied to groove distribution parameters such as number, angle, depth, and width. Experiments were carried out on a friction pair to test its thermoelastic instability. Results show that as the value of each groove distribution parameter increases, the fitting curves of the average temperature, range, and the temperature inhomogeneity coefficient of the temperature field are in forms of oscillation. The average temperature and range have the same trends. The paper concludes that the average temperature range and inhomogeneity coefficient of the temperature field distribute in order, so that the optimized structural parameters were obtained.


Author(s):  
Xiaoyue Sang ◽  
Zhaohui Yuan ◽  
Xiaojun Yu ◽  
GaoXi Xiao ◽  
Muhammad Tariq Sadiq ◽  
...  

As a key factor characterizing the control accuracy of multi-temperature zone systems (MTZSs), the stable control of temperature field distribution uniformity and consistency is of critical importance for MTZSs, and it largely determines the product quality and production efficiency. Due to the complicated multiple input and output properties, as well as the various external variations in practice, however, it is extremely difficult to monitor the temperature field distribution in production process. To address the uniform and consistent temperature field distribution problem in MTZSs, a multi-variable dynamic matrix control (DMC)-based predictive control mechanism is proposed in this paper. Specifically, we first establish a finite element-based heat transfer model to analyse heat transfer within the multi-temperature zone, and then propose a multi-variable DMC-based decoupling design method to decompose the entire system into multiple subsystems with single-input single-output for temperature uniformity distribution control in MTZS. By utilizing the ANSYS tools to analyse the transient field temperatures, we obtain both time and space distribution characteristics of the transient temperature field with the proposed control method, and also compare such results with those obtained using the PID control method. Finally, we apply the proposed multi-variable DMC control mechanism onto a multi-temperature sintering furnace of a practical industrial product line for verification. Results show that, with the proposed control mechanism adopted, the difference between the highest and lowest temperature of any workpiece could be maintained within 5°C in the heat rising up period, which convincingly verifies the effectiveness of the proposed predictive control algorithm in different cases.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1792
Author(s):  
Bingbing Dong ◽  
Yu Gu ◽  
Changsheng Gao ◽  
Zhu Zhang ◽  
Tao Wen ◽  
...  

In recent years, the new type design of current transformer with bushing structure has been widely used in the distribution network system due to its advantages of miniaturization, high mechanical strength, maintenance-free, safety and environmental protection. The internal temperature field distribution is an important characteristic parameter to characterize the thermal insulation and aging performance of the transformer, and the internal temperature field distribution is mainly derived from the joule heat generated by the primary side guide rod after flowing through the current. Since the electric environment is a transient field and the thermal environment changes slowly with time as a steady field under the actual conditions, it is more complex and necessary to study the electrothermal coupling field of current transformer (CT). In this paper, a 3D simulation model of a new type design of current transformer for distribution network based on electric-thermal coupling is established by using finite element method (FEM) software. Considering that the actual thermal conduction process of CT is mainly by conduction, convection and radiation, three different kinds of boundary conditions such as solid heat transfer boundary condition, heat convection boundary condition and surface radiation boundary condition are applied to the CT. Through the model created above, the temperature rise process and the distribution characteristics of temperature gradient of the inner conductor under different current, different ambient temperatures and different core diameters conditions are studied. Meanwhile, the hottest temperature and the maximum temperature gradient difference are calculated. According to this, the position of weak insulation of the transformer is determined. The research results can provide a reference for the factory production of new type design of current transformer.


Sign in / Sign up

Export Citation Format

Share Document