Spectral characteristics of atmospheric turbulence model

Author(s):  
Guojun Xin ◽  
Shida Liu ◽  
Shikou Liu ◽  
Fuming Liang
2018 ◽  
Vol 855 ◽  
pp. 1116-1129 ◽  
Author(s):  
Nicolas Tobin ◽  
Leonardo P. Chamorro

Using a physics-based approach, we infer the impact of the coherence of atmospheric turbulence on the power fluctuations of wind farms. Application of the random-sweeping hypothesis reveals correlations characterized by advection and turbulent diffusion of coherent motions. Those contribute to local peaks and troughs in the power spectrum of the combined units at frequencies corresponding to the advection time between turbines, which diminish in magnitude at high frequencies. Experimental inspection supports the results from the random-sweeping hypothesis in predicting spectral characteristics, although the magnitude of the coherence spectrum appears to be over-predicted. This deviation is attributed to the presence of turbine wakes, and appears to be a function of the turbulence approaching the first turbine in a pair.


2019 ◽  
Vol 64 (4) ◽  
pp. 1-13
Author(s):  
Honglei Ji ◽  
Renliang Chen ◽  
Pan Li

This paper presents a distributed turbulence model with rigorous spatial cross-correlation for helicopter flight simulation in atmospheric turbulence and for future handling-quality analysis. First, digital filters with longitudinal correlations of the von Kármán turbulence are developed to generate discrete turbulence velocity components. Meanwhile, transverse turbulence correlations are considered by relating the filters in different positions with mathematically rigorous spatial cross-correlation. Then, the distributions of the related filters on the transverse plane in front of helicopter and their velocity components in the longitudinal direction of airspeed, as well as turbulence models of helicopter aerodynamic surfaces, are established. Finally, a flight dynamics model coupled with the turbulence model is developed and validated against the flight-test data. The proposed model can achieve accurate real-time simulations of helicopter response to atmospheric turbulence in the frequency range of interest of handling qualities. The effect of transverse turbulence correlations on helicopter frequency response is also analyzed. The results show that the simulation model regardless of transverse turbulence correlations would aggravate the "rotor-to-body attenuation" effect of the main rotor and therefore underpredict the helicopter roll, pitch, and heave rate responses to atmospheric turbulence in the frequency range of interest.


2004 ◽  
Vol 41 (6) ◽  
pp. 845-848 ◽  
Author(s):  
Fu Zun-Tao ◽  
Zhang Lin ◽  
Liu Shi-Da ◽  
Liu Shi-Kuo

2004 ◽  
Vol 414 (3) ◽  
pp. L33-L36 ◽  
Author(s):  
A. Ziad ◽  
J. Borgnino ◽  
F. Martin ◽  
J. Maire ◽  
D. Mourard

Sign in / Sign up

Export Citation Format

Share Document