scholarly journals 183 CARTILAGE-SPECIFIC KNOCKOUT OF SITE-1 PROTEASE IN POSTNATAL MICE RESULTS IN AN ABNORMAL GROWTH PLATE WITH DISRUPTION OF HYPERTROPHIC CHONDROCYTE DIFFERENTIATION AND SUBSEQUENT CHONDRODYSPLASIA

2010 ◽  
Vol 18 ◽  
pp. S88
Author(s):  
D. Patra ◽  
E. DeLassus ◽  
S. Hayashi ◽  
L.J. Sandell
2008 ◽  
Vol 2 (1) ◽  
pp. 121-125 ◽  
Author(s):  
K.D Evans ◽  
L.E Sheppard ◽  
D.I Grossman ◽  
S.H Rao ◽  
R.B Martin ◽  
...  

Bisphosphonates, used to treat diseases exhibiting increased osteoclast activity, reduce longitudinal bone growth through an as yet undefined mechanism. Pamidronate, an aminobisphosphonate, was given weekly to mice at 0, 1.25, or 2.50 mg/kg/wk beginning at 4 weeks of age. At 12 weeks of age, humeral length, growth plate area, regional chondrocyte cell numbers, chondrocyte apoptosis, TRAP stained osteoclast number, and osteoclast function assessed by cathepsin K immunohistochemistry were quantified. Humeral length was decreased in pamidronate treated mice compared to vehicle control mice, and correlated with greater growth plate areas reflecting greater proliferative and hypertrophic chondrocyte cell numbers with fewer hypertrophic cells undergoing apoptosis. Pamidronate treatment increased TRAP stained osteoclast numbers yet decreased cathepsin K indicating that pamidronate repressed osteoclast maturation and function. The data suggest that long term cyclic pamidronate treatment impairs bone growth by inhibition of osteoclast maturation thereby reducing cartilage-to-bone turnover within the growth plate.


2004 ◽  
Vol 19 (10) ◽  
pp. 1678-1688 ◽  
Author(s):  
Sara Tavella ◽  
Roberta Biticchi ◽  
Anna Schito ◽  
Eleonora Minina ◽  
Davide Di Martino ◽  
...  

2014 ◽  
Vol 53 (2) ◽  
pp. R39-R45 ◽  
Author(s):  
Andrei S Chagin ◽  
Henry M Kronenberg

Herein, we review the regulation of differentiation of the growth plate chondrocytes by G-proteins. In connection with this, we summarize the current knowledge regarding each family of G-protein α subunit, specifically, Gαs, Gαq/11, Gα12/13, and Gαi/o. We discuss different mechanisms involved in chondrocyte differentiation downstream of G-proteins and different G-protein-coupled receptors (GPCRs) activating G-proteins in the epiphyseal chondrocytes. We conclude that among all G-proteins and GPCRs expressed by chondrocytes, Gαshas the most important role and prevents premature chondrocyte differentiation. Receptor for parathyroid hormone (PTHR1) appears to be the major activator of Gαsin chondrocytes and ablation of either one leads to accelerated chondrocyte differentiation, premature fusion of the postnatal growth plate, and ultimately short stature.


Endocrinology ◽  
2010 ◽  
Vol 151 (10) ◽  
pp. 4607-4612 ◽  
Author(s):  
Susanne U. Miedlich ◽  
Eric D. Zhu ◽  
Yves Sabbagh ◽  
Marie B. Demay

Rickets is a growth plate abnormality observed in growing animals and humans. Rachitic expansion of the hypertrophic chondrocyte layer of the growth plate, in the setting of hypophosphatemia, is due to impaired apoptosis of these cells. Rickets is observed in humans and mice with X-linked hypophosphatemia that is associated with renal phosphate wasting secondary to elevated levels of fibroblast growth factor-23. Rickets is also seen in settings of impaired vitamin D action, due to elevated PTH levels that increase renal phosphate excretion. However, mice with hypophosphatemia secondary to ablation of the renal sodium-dependent phosphate transport protein 2a (Npt2a), have not been reported to develop rickets. Because activation of the mitochondrial apoptotic pathway by phosphate is required for hypertrophic chondrocyte apoptosis in vivo, investigations were undertaken to address this paradox. Analyses of the Npt2a null growth plate demonstrate expansion of the hypertrophic chondrocyte layer at 2 wk of age, with resolution of this abnormality by 5 wk of age. This is temporally associated with an increase in circulating levels of 1,25-dihydroxyvitamin D. To address whether the receptor-dependent actions of this steroid hormone are required for normalization of the growth plate phenotype, the Npt2a null mice were mated with mice lacking the vitamin D receptor or were rendered vitamin D deficient. These studies demonstrate that the receptor-dependent actions of 1,25-dihydroxyvitamin D are required for maintenance of a normal growth plate phenotype in the Npt2a null mice.


Bone ◽  
2007 ◽  
Vol 40 (5) ◽  
pp. 1361-1369 ◽  
Author(s):  
Anenisia C. Andrade ◽  
Ola Nilsson ◽  
Kevin M. Barnes ◽  
Jeffrey Baron

2004 ◽  
Vol 279 (13) ◽  
pp. 13205-13214 ◽  
Author(s):  
Guoyan Wang ◽  
Anita Woods ◽  
Shalev Sabari ◽  
Luca Pagnotta ◽  
Lee-Anne Stanton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document