scholarly journals Localization of the 3′ IgH Locus Elements that Effect Long-Distance Regulation of Class Switch Recombination

Immunity ◽  
2001 ◽  
Vol 15 (2) ◽  
pp. 187-199 ◽  
Author(s):  
Eric Pinaud ◽  
Ahmed Amine Khamlichi ◽  
Caroline Le Morvan ◽  
Mireille Drouet ◽  
Valérie Nalesso ◽  
...  
2016 ◽  
Vol 213 (3) ◽  
pp. 303-312 ◽  
Author(s):  
Anne-Sophie Thomas-Claudepierre ◽  
Isabelle Robert ◽  
Pedro P. Rocha ◽  
Ramya Raviram ◽  
Ebe Schiavo ◽  
...  

Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to Ig switch regions (S regions). During CSR, the IgH locus undergoes dynamic three-dimensional structural changes in which promoters, enhancers, and S regions are brought to close proximity. Nevertheless, little is known about the underlying mechanisms. In this study, we show that Med1 and Med12, two subunits of the mediator complex implicated in transcription initiation and long-range enhancer/promoter loop formation, are dynamically recruited to the IgH locus enhancers and the acceptor regions during CSR and that their knockdown in CH12 cells results in impaired CSR. Furthermore, we show that conditional inactivation of Med1 in B cells results in defective CSR and reduced acceptor S region transcription. Finally, we show that in B cells undergoing CSR, the dynamic long-range contacts between the IgH enhancers and the acceptor regions correlate with Med1 and Med12 binding and that they happen at a reduced frequency in Med1-deficient B cells. Our results implicate the mediator complex in the mechanism of CSR and are consistent with a model in which mediator facilitates the long-range contacts between S regions and the IgH locus enhancers during CSR and their transcriptional activation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1414-1414
Author(s):  
Brian J. Taylor ◽  
Julie A. Pittman ◽  
Andrew R. Belch ◽  
Linda M. Pilarski

Abstract During class switch recombination (CSR) B cells change their immunoglobulin heavy chain (IgH) constant region genes by a deletional recombination mechanism involving well characterized switch (S) regions several Kb downstream of IgH variable region (VDJ) sequences. Unlike VDJ recombination, the junction formed by CSR between pre-switch S-mu (IgM) and post-switch S-gamma (IgG) is imprecise, and the key factors mediating this process are not fully understood. In multiple myeloma, a bone marrow cancer characterized by post-switch plasma cells bearing a unique clonotypic VDJ, switch regions have been shown to mediate translocations in a subset of MM patients, suggesting a role in transformation. In this study we cloned and sequenced the VDJ-hybrid immunoglobulin switch (VDJ-S) regions of post-switch multiple myeloma (MM) cells at diagnosis and a second time point to determine if the switch junction was normal, homogeneous within a time point, and stable over the course of malignancy. The VDJ-S of five stage III IgG MM patients were examined in this study. Each patient has a specific clonotypic VDJ region and downstream hybrid switch junction (S-mu/S-gamma) arising after class switch recombination (CSR) from IgM to IgG. For each patient two samples were tested: a diagnosis sample and a second sample taken between 1.6 and 4.2 years later. The 5–7 Kb VDJ-S was amplified by long distance PCR using bulk DNA samples from bone marrow and blood as template, CDR2 specific sense primers and S-gamma specific antisense primers. In each case a single DNA product was amplified, cloned, and sequenced with primers covering the VDJ-S region. Patient specific CDR2 primers were used to confirm that the fragments were clonotypic. Unique switch junctions for patients 1–5 were detected at positions 125, 251, 435, 590, and 750 of S-mu, respectively. This agrees with previous studies mapping MM switch junctions to the 5′ portion of S-mu. The sequence and mutation profile of the switch junctions, with more frequent mutations in the S-mu region upstream of the hybrid junction, suggests that these junctions arise from normal CSR. A single hybrid junction was detected in all patients, corresponding to the single VDJ-Switch fragment amplified by long-distance PCR. The switch junction sequences also remained constant between time point samples, suggesting switch junction stability. Interestingly, new mutations were observed in the 3.5 Kb region upstream of the switch region, in the second time point samples of 2/5 patients. Most notably, 19 new mutations were detected in one patient, including 3 bp and 64 bp deletions 135 and 223 bp downstream of the intronic enhancer, respectively. The significance of these mutations is unclear, considering previous studies showing mutations, insertions, and deletions in this region in normal CSR. Nevertheless, it seems this process continues in clonotypic cells of some patients throughout malignancy. This ongoing mutation may lead to ‘remodeling’ of the VDJ-S region, which is significant in the context of immunoglobulin translocations where proximity with immunoglobulin enhancers may confer a selective advantage.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009288
Author(s):  
Sandrine Le Noir ◽  
Amélie Bonaud ◽  
Bastien Hervé ◽  
Audrey Baylet ◽  
François Boyer ◽  
...  

DNA lesions inflicted by activation-induced deaminase (AID) instrumentally initiate the processes reshaping immunoglobulin genes in mature B-cells, from local somatic hypermutation (SHM) to junctions of distant breaks during class switch recombination (CSR). It remains incompletely understood how these divergent outcomes of AID attacks are differentially and temporally focused, with CSR strictly occurring in the Ig heavy chain (IgH) locus while SHM concentrates on rearranged V(D)J regions in the IgH and Ig light chain loci. In the IgH locus, disruption of either the 3’Regulatory Region (3’RR) super-enhancer or of switch (S) regions preceding constant genes, profoundly affects CSR. Reciprocally, we now examined if these elements are sufficient to induce CSR in a synthetic locus based on the Igκ locus backbone. Addition of a surrogate “core 3’RR” (c3’RR) and of a pair of transcribed and spliced Switch regions, together with a reporter system for “κ-CSR” yielded a switchable Igκ locus. While the c3’RR stimulated SHM at S regions, it also lowered the local SHM threshold necessary for switch recombination to occur. The 3’RR thus both helps recruit AID to initiate DNA lesions, but then also promotes their resolution through long-distance synapses and recombination following double-strand breaks.


2017 ◽  
Vol 198 (6) ◽  
pp. 2434-2444 ◽  
Author(s):  
Scott Feldman ◽  
Robert Wuerffel ◽  
Ikbel Achour ◽  
Lili Wang ◽  
Phillip B. Carpenter ◽  
...  

2020 ◽  
Author(s):  
Xuefei Zhang ◽  
Hye Suk Yoon ◽  
Aimee M. Chapdelaine-Williams ◽  
Nia Kyritsis ◽  
Frederick W. Alt

ABSTRACTIgH class switch recombination (CSR) replaces Cμ constant region (CH) exons with one of six downstream CHS by joining transcription-targeted DSBs in the Cμ switch (S) region to DSBs in a downstream S region. Chromatin loop extrusion underlies fundamental CSR mechanisms including 3’IgH regulatory region (3’IgHRR)-mediated S region transcription, CSR center formation, and deletional CSR joining. There are ten consecutive CTCF binding elements (CBEs) downstream of the 3’IgHRR, termed the “3’IgH CBEs”. Prior studies showed that deletion of eight 3’IgH CBEs did not detectably affect CSR. Here, we report that deletion of all 3’IgH CBEs impacts, to varying degrees, germline transcription and CSR of upstream S regions, except Sγ1. Moreover, deletion of all 3’IgH CBEs rendered the 6kb region just downstream highly transcribed and caused sequences within to be aligned with Sμ, broken, and joined to form aberrant CSR rearrangements. These findings implicate the 3’IgH CBEs as a critical insulator for focusing loop extrusion-mediated 3’IgHRR transcriptional and CSR activities on upstream CH locus targets.SignificanceB lymphocytes change antibody heavy chain (IgH) isotypes by a recombination/deletion process called IgH class switch recombination (CSR). CSR involves introduction of DNA breaks into a donor switch (S) region and also into one of six downstream S regions, with joining of the breaks changing antibody isotype. A chromatin super-anchor, of unknown function, is located just downstream of the IgH locus. We show that complete deletion of this super-anchor variably decreases CSR to most S regions and creates an ectopic S region downstream of IgH locus that undergoes aberrant CSR-driven chromosomal rearrangements. Based on these and other findings, we conclude that the super-anchor downstream of IgH is a critical insulator for focusing potentially dangerous CSR rearrangements to the IgH locus.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2738-2738
Author(s):  
Pedro P Rocha ◽  
Yi Fu ◽  
JungHyun Kim ◽  
Jane Skok

Abstract Class Switch Recombination (CSR) involves the introduction of double stranded breaks (DSBs) at the switch regions of the immunoglulin heavy chain (Igh) locus by the enzyme Activation Cytidine Deaminse (AID). AID can also act as a general mutator targeting other loci in the genome which can then either be repaired faithfully or in an error-prone fashion introducing mutations and potentially initiating B cell lymphoma. The factors contributing to the choice of repair pathway are not fully understood. Here we tested the hypothesis that repair pathway choice is influenced by differential accessibility and expression levels of target loci across cell cycle. More specifically in the context of CSR we tested whether differential regulation of gene accessibility across cell cycle is an important determinant for AID binding and subsequent repair pathway choice as different repair pathways predominate at different stages of cell cycle. Using 3D-FISH in conjunction with Immunofluorescence we observed that AID target genes that are faithfully repaired are more accessible (found in euchromatic regions) in the G2 phase of the cell cycle then genes that are frequently mutated. In contrast, those genes which are repaired in an error prone fashion are more accessible in the G1 phase of cell cycle. Since Homologous Recombination mediated repair (HR), which is a faithful repair mechanism, occurs in G2 we speculate that accessibility of these genes at this stage of cell cycle facilitates action by this repair pathway. Conversely, genes that are more accessible during the G1 phase of cell cycle will be repaired by the non-homologous end joining (NHEJ) repair pathway and therefore are more likely to be mutated. Thus, HR could be the pathway by which faithful repair is accomplished and use of the NHEJ pathway on the other hand could contribute to the introduction of dangerous DNA mutations that might lead to B cell transformation and cancer. To connect differences in accessibility with repair pathway usage, we used a mouse model carrying a hypomorphic mutation in BRCA2, a protein involved in HR. This is the first mouse model impaired in HR that eludes embryonic lethality and allows inspection of the role of this pathway in maintaining genomic stability in splenocytes undergoing CSR. Our preliminary investigations indicate that in Brca2 mutant B cells not only is the integrity of fathfully repaired loci compromised, but the Igh locus is also damaged. Taken together these results support our hypothesis and further indicate that the HR pathway is involved in repairing Igh. Given that approximately 95% of lymphomas are of B cell origin and many of these are associated with AID mediated breaks, it is crucial for us to understand the factors that influence targeting and repair. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 36 (8) ◽  
pp. 2181-2191 ◽  
Author(s):  
Hei-Lanne Dougier ◽  
Stéphane Reynaud ◽  
Eric Pinaud ◽  
Claire Carrion ◽  
Laurent Delpy ◽  
...  

EMBO Reports ◽  
2020 ◽  
Vol 21 (8) ◽  
Author(s):  
Alexanda K Ling ◽  
Meagan Munro ◽  
Natasha Chaudhary ◽  
Conglei Li ◽  
Maribel Berru ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document