The aetiology of delayed visual maturation: short review and personal findings in relation to magnetic resonance imaging

1997 ◽  
Vol 1 (1) ◽  
pp. 31-34 ◽  
Author(s):  
Eugenio Mercuri ◽  
Janette Atkinson ◽  
Oliver Braddick ◽  
Shirley Anker ◽  
Frances Cowan ◽  
...  
2020 ◽  
Vol 27 (3) ◽  
pp. 352-361 ◽  
Author(s):  
Silvanose Biju ◽  
Tatjana N. Parac-Vogt

Paramagnetic Lanthanide ions incorporated into nano- architectures are emerging as a versatile platform for Magnetic Resonance Imaging (MRI) contrast agents due to their strong contrast enhancement effects combined with the platform capability to include multiple imaging modalities. This short review examines the application of lanthanide based nanoarchitectures (nanoparticles and nano- assemblies) in the development of multifunctional probes for single and multimodal imaging involving high field MRI as one imaging modality.


2018 ◽  
Vol 64 (1) ◽  
pp. 19-21 ◽  
Author(s):  
Rafael Alves Cordeiro ◽  
Leonardo Santos Hoff ◽  
Marcos Vinícius Fernandes Garcia ◽  
Hilton Muniz Leão Filho ◽  
Eduardo Ferreira Borba

Summary Peliosis hepatis is a rare benign disorder characterized by the presence of multiple cavities filled with blood with no preferential localization in the liver parenchyma. It may be related to several etiologic conditions, especially infections and toxicity of immunosuppressive drugs. To our knowledge, there are only three articles reporting the association between peliosis hepatis and systemic lupus erythematosus. In this report, we describe a case of this rare condition, highlighting the importance of magnetic resonance imaging. A short review of this subject is also presented.


2020 ◽  
Vol 62 (1) ◽  
pp. 108-119
Author(s):  
Mihaela Pop ◽  
Nicoleta Stefu

AbstractThis review describes in brief recent magnetic resonance imaging (MRI) methods for assessing cardiac structure in healthy and pathologic state using diffusion-weighted (DW) and diffusion tensor imaging (DTI) approaches. A background on the theory and MR pulse sequences employed in DW/DT imaging is given, along with the calculation of diffusion tensor (D), apparent diffusion coefficient (ADC) and fractional anisotropy (FA). Parametric maps derived from DW/DT images can quantify microstructure alterations due to fibrotic collagen deposition, along with associated changes in cardiac muscle anisotropy. Representative examples of ADC and FA parametric maps are shown from ex vivo high-resolution DT images of explanted healthy and scarred hearts obtained from pre-clinical investigations. Furthermore, examples of fiber tractography demonstrating DTI-based 3D (three-dimensional) reconstruction of fiber directions within the heart are illustrated using advanced open-source software. Lastly, future developments and potential translation of DW/DT methods into routine clinical evaluation for cardiac MR imaging protocols are highlighted.


Author(s):  
Alan P. Koretsky ◽  
Afonso Costa e Silva ◽  
Yi-Jen Lin

Magnetic resonance imaging (MRI) has become established as an important imaging modality for the clinical management of disease. This is primarily due to the great tissue contrast inherent in magnetic resonance images of normal and diseased organs. Due to the wide availability of high field magnets and the ability to generate large and rapidly switched magnetic field gradients there is growing interest in applying high resolution MRI to obtain microscopic information. This symposium on MRI microscopy highlights new developments that are leading to increased resolution. The application of high resolution MRI to significant problems in developmental biology and cancer biology will illustrate the potential of these techniques.In combination with a growing interest in obtaining high resolution MRI there is also a growing interest in obtaining functional information from MRI. The great success of MRI in clinical applications is due to the inherent contrast obtained from different tissues leading to anatomical information.


1998 ◽  
Vol 41 (3) ◽  
pp. 538-548 ◽  
Author(s):  
Sean C. Huckins ◽  
Christopher W. Turner ◽  
Karen A. Doherty ◽  
Michael M. Fonte ◽  
Nikolaus M. Szeverenyi

Functional Magnetic Resonance Imaging (fMRI) holds exciting potential as a research and clinical tool for exploring the human auditory system. This noninvasive technique allows the measurement of discrete changes in cerebral cortical blood flow in response to sensory stimuli, allowing determination of precise neuroanatomical locations of the underlying brain parenchymal activity. Application of fMRI in auditory research, however, has been limited. One problem is that fMRI utilizing echo-planar imaging technology (EPI) generates intense noise that could potentially affect the results of auditory experiments. Also, issues relating to the reliability of fMRI for listeners with normal hearing need to be resolved before this technique can be used to study listeners with hearing loss. This preliminary study examines the feasibility of using fMRI in auditory research by performing a simple set of experiments to test the reliability of scanning parameters that use a high resolution and high signal-to-noise ratio unlike that presently reported in the literature. We used consonant-vowel (CV) speech stimuli to investigate whether or not we could observe reproducible and consistent changes in cortical blood flow in listeners during a single scanning session, across more than one scanning session, and in more than one listener. In addition, we wanted to determine if there were differences between CV speech and nonspeech complex stimuli across listeners. Our study shows reproducibility within and across listeners for CV speech stimuli. Results were reproducible for CV speech stimuli within fMRI scanning sessions for 5 out of 9 listeners and were reproducible for 6 out of 8 listeners across fMRI scanning sessions. Results of nonspeech complex stimuli across listeners showed activity in 4 out of 9 individuals tested.


Sign in / Sign up

Export Citation Format

Share Document