scholarly journals Parental Expression of the Chromodomain Protein Pdd1p Is Required for Completion of Programmed DNA Elimination and Nuclear Differentiation

1999 ◽  
Vol 4 (5) ◽  
pp. 865-872 ◽  
Author(s):  
Robert S Coyne ◽  
Mikhail A Nikiforov ◽  
James F Smothers ◽  
C.David Allis ◽  
Meng-Chao Yao
Genetics ◽  
1997 ◽  
Vol 147 (2) ◽  
pp. 643-655 ◽  
Author(s):  
Kenneth G Ross ◽  
Michael J B Krieger ◽  
D DeWayne Shoemaker ◽  
Edward L Vargo ◽  
Laurent Keller

We describe genetic structure at various scales in native populations of the fire ant Solenopsis invicta using two classes of nuclear markers, allozymes and microsatellites, and markers of the mitochondrial genome. Strong structure was found at the nest level in both the monogyne (single queen) and polygyne (multiple queen) social forms using allozymes. Weak but significant microgeographic structure was detected above the nest level in polygyne populations but not in monogyne populations using both classes of nuclear markers. Pronounced mitochondrial DNA (mtDNA) differentiation was evident also at this level in the polygyne form only. These microgeographic patterns are expected because polygyny in ants is associated with restricted local gene flow due mainly to limited vagility of queens. Weak but significant nuclear differentiation was detected between sympatric social forms, and strong mtDNA differentiation also was found at this level. Thus, queens of each form seem unable to establish themselves in nests of the alternate type, and some degree of assortative mating by form may exist as well. Strong differentiation was found between the two study regions usinga all three sets of markers. Phylogeographic analyses of the mtDNA suggest that recent limitations on gene flow rather than longstanding barriers to dispersal are responsible for this large-scale structure.


2011 ◽  
Vol 286 (43) ◽  
pp. 37045-37052 ◽  
Author(s):  
Ursula E. Schoeberl ◽  
Kazufumi Mochizuki
Keyword(s):  

Plant Science ◽  
1998 ◽  
Vol 131 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Johanna Forsberg ◽  
Christina Dixelius ◽  
Ulf Lagercrantz ◽  
Kristina Glimelius

2018 ◽  
Vol 156 (3) ◽  
pp. 165-172 ◽  
Author(s):  
Andrey K. Grishanin ◽  
Maxim V. Zagoskin

Chromatin diminution (CD) is a phenomenon of programmed DNA elimination which takes place in early embryogenesis in some eukaryotes. The mechanism and biological role of CD remain largely unknown. During CD in the freshwater copepod Cyclops kolensis, the genome of cells of the somatic lineage is reorganized and reduced in size by more than 90% without affecting the genome of germline cells. Although the diploid chromosome number is unchanged, chromosome size is dramatically reduced by CD. The eliminated DNA consists primarily of repetitive sequences and localizes within granules during the elimination process. In this review, we provide an overview of CD in C. kolensis including both cytological and molecular studies.


1986 ◽  
Vol 6 (8) ◽  
pp. 3014-3017 ◽  
Author(s):  
D S Pederson ◽  
K Shupe ◽  
G A Bannon ◽  
M A Gorovsky

The relationship between chromatin structure and the transcriptional activity of the histone H4-I gene of Tetrahymena thermophila was explored. Indirect end-labeling studies demonstrated that major DNase I- and micrococcal nuclease-hypersensitive sites flank the active macronuclear genes but not the inactive micronuclear genes. Runon transcription experiments with isolated macronuclei indicated that histone gene transcription rates decreased when cells were starved. However, macronuclear nuclease-hypersensitive sites persisted upon starvation. Thus, one level of transcriptional control of the H4-I gene results in altered chromatin structure and is established during nuclear differentiation. The rate of transcription is also controlled, but not through hypersensitive site-associated structures.


2000 ◽  
Vol 20 (11) ◽  
pp. 4128-4134 ◽  
Author(s):  
Mikhail A. Nikiforov ◽  
Martin A. Gorovsky ◽  
C. David Allis

ABSTRACT Conversion of the germ line micronuclear genome into the genome of a somatic macronucleus in Tetrahymena thermophila requires several DNA rearrangement processes. These include (i) excision and subsequent elimination of several thousand internal eliminated sequences (IESs) scattered throughout the micronuclear genome and (ii) breakage of the micronuclear chromosomes into hundreds of DNA fragments, followed by de novo telomere addition to their ends. Chromosome breakage sequences (Cbs) that determine the sites of breakage and short regions of DNA adjacent to them are also eliminated. Both processes occur concomitantly in the developing macronucleus. Two stage-specific protein factors involved in germ line DNA elimination have been described previously. Pdd1p and Pdd2p (for programmed DNA degradation) physically associate with internal eliminated sequences in transient electron-dense structures in the developing macronucleus. Here, we report the purification, sequence analysis, and characterization of Pdd3p, a novel developmentally regulated, chromodomain-containing polypeptide. Pdd3p colocalizes with Pdd1p in the peripheral regions of DNA elimination structures, but is also found more internally. DNA cross-linked and immunoprecipitated with Pdd1p- or Pdd3p-specific antibodies is enriched in IESs, but not Cbs, suggesting that different protein factors are involved in elimination of these two groups of sequences.


1995 ◽  
Vol 131 (4) ◽  
pp. 543-556 ◽  
Author(s):  
KEITH I. KINGHAM ◽  
JEFFREY G. DUCKETT ◽  
MATTHEW C. P. GLYN ◽  
ANDREW R. LEITCH

1985 ◽  
Vol 5 (6) ◽  
pp. 1260-1267
Author(s):  
M C Yao ◽  
S G Zhu ◽  
C H Yao

Tetrahymena thermophila contains in the macronucleus multiple copies of extrachromosomal palindromic genes coding for rRNA (rDNA) which are generated from a single chromosomal copy during development. In this study we isolated the chromosomal copy of rDNA and determined the structure and developmental fate of the sequence surrounding its 5' junction. The result indicates that specific chromosomal breakage occurs at or near the 5' junction of rDNA during development. The breakage event is associated with DNA elimination and telomeric sequence addition. Similar results were also found previously for the 3' junction of this gene. These results could explain how the extrachromosomal rDNA is first generated. Near both junctions of the chromosomal rDNA, a pair of 20-nucleotide repeats was found. These sequences might serve as signals for site-specific breakage. In addition, we found a pair of perfect inverted repeats at the 5' junction of this gene. The repeats are 42 nucleotides long and are separated by 28 nucleotides. The existence of this structure provides a simple explanation for the formation of the palindromic rDNA.


Sign in / Sign up

Export Citation Format

Share Document