Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain

2003 ◽  
Vol 5 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Karen L. Elkins ◽  
Siobhán C. Cowley ◽  
Catharine M. Bosio
2014 ◽  
Vol 82 (5) ◽  
pp. 2068-2078 ◽  
Author(s):  
Christopher R. Doyle ◽  
Ji-An Pan ◽  
Patricio Mena ◽  
Wei-Xing Zong ◽  
David G. Thanassi

ABSTRACTFrancisella tularensisis a facultative intracellular, Gram-negative pathogen and the causative agent of tularemia. We previously identified TolC as a virulence factor of theF. tularensislive vaccine strain (LVS) and demonstrated that a ΔtolCmutant exhibits increased cytotoxicity toward host cells and elicits increased proinflammatory responses compared to those of the wild-type (WT) strain. TolC is the outer membrane channel component used by the type I secretion pathway to export toxins and other bacterial virulence factors. Here, we show that the LVS delays activation of the intrinsic apoptotic pathway in a TolC-dependent manner, both during infection of primary macrophages and during organ colonization in mice. The TolC-dependent delay in host cell death is required forF. tularensisto preserve its intracellular replicative niche. We demonstrate that TolC-mediated inhibition of apoptosis is an active process and not due to defects in the structural integrity of the ΔtolCmutant. These findings support a model wherein the immunomodulatory capacity ofF. tularensisrelies, at least in part, on TolC-secreted effectors. Finally, mice vaccinated with the ΔtolCLVS are protected from lethal challenge and clear challenge doses faster than WT-vaccinated mice, demonstrating that the altered host responses to primary infection with the ΔtolCmutant led to altered adaptive immune responses. Taken together, our data demonstrate that TolC is required for temporal modulation of host cell death during infection byF. tularensisand highlight how shifts in the magnitude and timing of host innate immune responses may lead to dramatic changes in the outcome of infection.


2008 ◽  
Vol 76 (9) ◽  
pp. 4311-4321 ◽  
Author(s):  
Roberto De Pascalis ◽  
Betsy C. Taylor ◽  
Karen L. Elkins

ABSTRACT Francisella tularensis, a small gram-negative intracellular bacterium responsible for causing tularemia, is highly pathogenic and classified as a category A agent of bioterrorism. As for other intracellular pathogens, successful protective immune responses to Francisella tularensis require rapid and efficient induction of gamma interferon (IFN-γ) production. Studies using intracellular bacteria such as Listeria monocytogenes as well as Francisella suggest that natural killer (NK) and T cells are important sources of IFN-γ. However, comprehensive characterization of specific sources of IFN-γ produced during Francisella infection in vivo remains incomplete, and depletion of NK cells before infection of mice with the F. tularensis live vaccine strain (LVS) has little impact on the course or outcome of infection. In this study, we determined the cell subpopulations that respond quickly to intradermal F. tularensis LVS infection of mice by producing IFN-γ within hours to a few days. Splenic and liver lymphocytes were obtained from LVS-infected mice and analyzed for IFN-γ mRNA by reverse transcription-PCR, for intracellular cytokine expression by multiparameter flow cytometry, and for ex vivo production of IFN-γ protein by enzyme-linked immunosorbent assay. Cells producing IFN-γ were readily detectable by day 3 after infection, and numbers progressively increased through days 5 to 7. Importantly, the cell types responsible for IFN-γ production were much more varied than expected: these included not only NK cells and T cells, which might be predicted, but also other cells, including dendritic cells (DCs), “NK DCs,” NK T cells, and neutrophils. Most importantly, since RAG-1 knockout mice appeared to exhibit a frequency of IFN-γ-producing cells comparable to that of intact wild-type mice, early IFN-γ production by innate immune cells does not depend on the presence of T or B cells.


2007 ◽  
Vol 44 (12) ◽  
pp. 3173-3184 ◽  
Author(s):  
Claudette L. Fuller ◽  
Katherine C. Brittingham ◽  
Mark W. Porter ◽  
Matthew J. Hepburn ◽  
Patricia L. Petitt ◽  
...  

2006 ◽  
Vol 117 (5) ◽  
pp. 1186-1188 ◽  
Author(s):  
Claudette L. Fuller ◽  
Katherine C. Brittingham ◽  
Matthew J. Hepburn ◽  
James W. Martin ◽  
Patricia L. Petitt ◽  
...  

2008 ◽  
Vol 76 (6) ◽  
pp. 2651-2659 ◽  
Author(s):  
Matthew D. Woolard ◽  
Lucinda L. Hensley ◽  
Thomas H. Kawula ◽  
Jeffrey A. Frelinger

ABSTRACT Two key routes of Francisella tularensis infection are through the skin and airway. We wished to understand how the route of inoculation influenced the primary acute adaptive immune response. We show that an intranasal inoculation of the F. tularensis live vaccine strain (LVS) with a 1,000-fold-smaller dose than an intradermal dose results in similar growth kinetics and peak bacterial burdens. In spite of similar bacterial burdens, we demonstrate a difference in the quality, magnitude, and kinetics of the primary acute T-cell response depending on the route of inoculation. Further, we show that prostaglandin E2 secretion in the lung is responsible for the difference in the gamma interferon (IFN-γ) response. Intradermal inoculation led to a large number of IFN-γ+ T cells 7 days after infection in both the spleen and the lung. In contrast, intranasal inoculation induced a lower number of IFN-γ+ T cells in the spleen and lung but an increased number of Th17 cells in the lung. Intranasal infection also led to a significant increase of prostaglandin E2 (PGE2) in the bronchoalveolar lavage fluid. Inhibition of PGE2 production with indomethacin treatment resulted in increased numbers of IFN-γ+ T cells and decreased bacteremia in the lungs of intranasally inoculated mice. This research illuminates critical differences in acute adaptive immune responses between inhalational and dermal infection with F. tularensis LVS mediated by the innate immune system and PGE2.


2021 ◽  
Author(s):  
Maha Alqahtani ◽  
Zhuo Ma ◽  
Kayla Fantone ◽  
Meenakshi Malik ◽  
Chandra Shekhar Bakshi

Francisella tularensis (F. tularensis) is a facultative intracellular, Gram-negative bacterium that causes a fatal disease known as tularemia. Due to its extremely high virulence, ease of spread by aerosolization, and the potential to be used as a bioterror agent, F. tularensis is classified by the CDC as a Tier 1 Category A Select Agent. Previous studies have demonstrated the roles of inflammasome sensors; absent in melanoma 2 (AIM2) and NLRP3, in the generation of innate immune responses to F. tularensis infection. However, contributions of both the AIM2 and NLRP3 in the development of vaccine-induced adaptive immune responses against F. tularensis are not known. This study determined the contributions of Aim2 and Nlrp3-inflammasome sensors in vaccine-induced immune responses in a mouse model of respiratory tularemia. We developed a model to vaccinate the Aim2 and Nlrp3-deficient mice (Aim2-/- and Nlrp3-/-) using the emrA1 mutant of F. tularensis live vaccine strain (LVS). The results demonstrate that the innate immune responses in Aim2-/- and Nlrp3-/- mice vaccinated with the emrA1 mutant differ from their wild-type counterparts. However, despite these differences in the innate immune responses, both Aim2-/- and Nlrp3-/- mice are fully protected against an intranasal lethal challenge dose of F. tularensis LVS. Moreover, the lack of both Aim2 and Nlrp3 inflammasome sensors does not affect the production of the vaccination-induced antibody and cell-mediated responses. Overall, this study reports a novel finding that both Aim2 and Nlrp3 are dispensable for vaccination-induced immunity against respiratory tularemia caused by F. tularensis.


Sign in / Sign up

Export Citation Format

Share Document