Report on Fifth International Symposium on Hepatitis Delta Virus and Liver Disease

1995 ◽  
Vol 1 (3) ◽  
pp. 32
Author(s):  
lan Carter
1993 ◽  
Vol 6 (3) ◽  
pp. 211-229 ◽  
Author(s):  
L B Polish ◽  
M Gallagher ◽  
H A Fields ◽  
S C Hadler

Hepatitis delta virus, discovered in 1977, requires the help of hepatitis B virus to replicate in hepatocytes and is an important cause of acute, fulminant, and chronic liver disease in many regions of the world. Because of the helper function of hepatitis delta virus, infection with it occurs either as a coinfection with hepatitis B or as a superinfection of a carrier of hepatitis B surface antigen. Although the mechanisms of transmission are similar to those of hepatitis B virus, the patterns of transmission of delta virus vary widely around the world. In regions of the world in which hepatitis delta virus infection is not endemic, the disease is confined to groups at high risk of acquiring hepatitis B infection and high-risk hepatitis B carriers. Because of the propensity of this viral infection to cause fulminant as well as chronic liver disease, continued incursion of hepatitis delta virus into areas of the world where persistent hepatitis B infection is endemic will have serious implications. Prevention depends on the widespread use of hepatitis B vaccine. This review focuses on the molecular biology and the clinical and epidemiologic features of this important viral infection.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Kaneemozhe Harichandran ◽  
Yiran Shen ◽  
Susannah Stephenson Tsoris ◽  
See-Chi Lee ◽  
John L. Casey

ABSTRACTHepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of acute and chronic liver disease. HDV produces three processed RNAs that accumulate in infected cells: the circular genome; the circular antigenome, which serves as a replication intermediate; and lesser amounts of the mRNA, which encodes the sole viral protein, hepatitis delta antigen (HDAg). The HDV genome and antigenome RNAs form ribonucleoprotein complexes with HDAg. Although HDAg is required for HDV replication, it is not known how the relative amounts of HDAg and HDV RNA affect replication, or whether HDAg synthesis is regulated by the virus. Using a novel transfection system in which HDV replication is initiated usingin vitro-synthesized circular HDV RNAs, HDV replication was found to depend strongly on the relative amounts of HDV RNA and HDAg. HDV controls these relative amounts via differential effects of HDAg on the production of HDV mRNA and antigenome RNA, both of which are synthesized from the genome RNA template. mRNA synthesis is favored at low HDAg levels but becomes saturated at high HDAg concentrations. Antigenome RNA accumulation increases linearly with HDAg and dominates at high HDAg levels. These results provide a conceptual model for how HDV antigenome RNA production and mRNA transcription are controlled from the earliest stage of infection onward and also demonstrate that, in this control, HDV behaves similarly to other negative-strand RNA viruses, even though there is no genetic similarity between them.IMPORTANCEHepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of liver disease; approximately 15 million people are chronically infected worldwide. There are no licensed therapies available. HDV is not related to any known virus, and few details regarding its replication cycle are known. One key question is whether and how HDV regulates the relative amounts of viral RNA and protein in infected cells. Such regulation might be important because the HDV RNA and protein form complexes that are essential for HDV replication, and the proper stoichiometry of these complexes could be critical for their function. Our results show that the relative amounts of HDV RNA and protein in cells are indeed important for HDV replication and that the virus does control them. These observations indicate that further study of these regulatory mechanisms is required to better understand replication of this serious human pathogen.


2021 ◽  
Author(s):  
Susannah Stephenson-Tsoris ◽  
John L. Casey

Hepatitis delta virus (HDV) is a significant human pathogen that causes acute and chronic liver disease; there is no licensed therapy. HDV is a circular negative-sense ssRNA virus that produces three RNAs in infected cells: genome, antigenome and mRNA; the latter encodes hepatitis delta antigen, the viral protein. These RNAs are synthesized by host DNA-dependent RNA polymerase acting as an RNA-dependent RNA polymerase. Although HDV genome RNA accumulates to high levels in infected cells, the mechanism by which this process occurs remains poorly understood. For example, the nature of the 5’ end of the genome, including the synthesis start site and its chemical composition, are not known. Analysis of this process has been challenging because the initiation site is part of an unstable precursor in the rolling circle mechanism by which HDV genome RNA is synthesized. In this study, circular HDV antigenome RNAs synthesized in vitro were used to directly initiate HDV genome RNA synthesis in transfected cells, thus enabling detection of the 5’ end of the genome RNA. The 5’ end of this RNA is capped, as expected for a Pol II product. Initiation begins at position 1646 on the genome, which is located near the loop end proximal to the start site for HDAg mRNA synthesis. Unexpectedly, synthesis begins with a guanosine that is not conventionally templated by the HDV RNA. IMPORTANCE Hepatitis delta virus (HDV) is a unique virus that causes severe liver disease. It uses host RNA Polymerase II to copy its circular RNA genome in a unique and poorly understood process. Although the virus RNA accumulates to high levels within infected cells, it is not known how synthesis of the viral RNA begins, nor even where on the genome synthesis starts. Here, we identify the start site for the initiation of HDV genome RNA synthesis as position 1646, which is at one end of the closed hairpin-like structure of the viral RNA. The 5’ end of the RNA is capped, as expected for Pol II products. However, RNA synthesis begins with a guanosine that is not present in the genome. Thus, although HDV uses Pol II to synthesize the viral genome, some details of the initiation process are different. These differences could be important for successfully targeting virus replication.


1986 ◽  
Vol 39 (8) ◽  
pp. 897-899 ◽  
Author(s):  
D Zauli ◽  
C Crespi ◽  
F B Bianchi ◽  
A Craxi ◽  
E Pisi

1989 ◽  
Vol 9 (1) ◽  
pp. 23-28 ◽  
Author(s):  
J. Saldanha ◽  
F. di Blasi ◽  
C. Blas ◽  
J. Velosa ◽  
F.M. Ramalho ◽  
...  

Hepatology ◽  
1986 ◽  
Vol 6 (6) ◽  
pp. 1303-1307 ◽  
Author(s):  
Giorgio Verme ◽  
Pietro Amoroso ◽  
Gennaro Lettieri ◽  
Paola Pierri ◽  
Ezio David ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document