Control apparatus for supplying purge gas

2021 ◽  
Vol 2021 (4-5) ◽  
pp. 11
Keyword(s):  
1982 ◽  
Vol 47 (7) ◽  
pp. 1769-1772 ◽  
Author(s):  
Yu. B. Kletenik ◽  
R. Yu. Beck ◽  
G. N. Sorkin ◽  
V. N. Kiriushov ◽  
S. P. Novitskii ◽  
...  

The peculiarities and technical characteristics are reported of the polarographic sensor having a renewable solid electrode and ensuring the performance of no less than 105 cycles. The sensor and special measurement-control apparatus are shown to allow the rapid check of the content of industrial electrolytes.


2021 ◽  
Vol 11 (8) ◽  
pp. 3481
Author(s):  
Volker Pasler ◽  
Frederik Arbeiter ◽  
Christine Klein ◽  
Dmitry Klimenko ◽  
Georg Schlindwein ◽  
...  

This work continues the development of a numerical model to simulate transient tritium transport on the breeder zone (BZ) level for the EU helium-cooled pebble bed (HCPB) concept for DEMO. The basis of the model is the open-source field operation and manipulation framework, OpenFOAM. The key output quantities of the model are the tritium concentration in the purge gas and in the coolant and the tritium inventory inside the BZ structure. New model features are briefly summarized. As a first relevant application a simulation of tritium transport for a single pin out of the KIT HCPB design for DEMO is presented. A variety of scenarios investigates the impact of the permeation regime (diffusion-limited vs. surface-limited), of an additional hydrogen content of 300 Pa H2 in the purge gas, of the released species (HT vs. T2), and of the choice of species-specific rate constants (recombination constant of HT set twice as for H2 and T2). The results indicate that the released species plays a minor role for permeation. Both permeation and inventory show a considerable dependence on a possible hydrogen addition in the purge gas. An enhanced HT recombination constant reduces steel T inventories and, in the diffusion-limited case, also permeation significantly. Scenarios with 80 bar vs. 2 bar purge gas pressure indicate that purge gas volumetric flow is decisive for permeation.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2185
Author(s):  
Mohammad Salim ◽  
Riyanto Teguh Widodo ◽  
Mohamed Ibrahim Noordin

The detection of counterfeit pharmaceuticals is always a major challenge, but the early detection of counterfeit medicine in a country will reduce the fatal risk among consumers. Technically, fast laboratory testing is vital to develop an effective surveillance and monitoring system of counterfeit medicines. This study proposed the combination of Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Differential Scanning Calorimetry (DSC) for the quick detection of counterfeit medicines, through the polymer analysis of blister packaging materials. A sample set containing three sets of original and counterfeit medicine was analyzed using ATR-FTIR and DSC, while the spectra from ATR-FTIR were employed as a fingerprint for the polymer characterization. Intending to analyze the polymeric material of each sample, DSC was set at a heating rate of 10 °C min−l and within a temperature range of 0- 400 °C, with nitrogen as a purge gas at a flow rate of 20 ml min−an. The ATR-FTIR spectra revealed the chemical characteristics of the plastic packaging of fake and original medicines. Further analysis of the counterfeit medicine’s packaging with DSC exhibited a distinct difference from the original due to the composition of polymers in the packaging material used. Overall, this study confirmed that the rapid analysis of polymeric materials through ATR-FTIR and comparing DSC thermograms of the plastic in their packaging effectively distinguished counterfeit drug products.


Sign in / Sign up

Export Citation Format

Share Document