3.131 In vivo imaging of the human cerebral cannabinoid-type 1 receptor in Huntington's disease

2007 ◽  
Vol 13 ◽  
pp. S161
Author(s):  
W. Vandenberghe ◽  
C. Casteels ◽  
I. Dhollander ◽  
K. Goffin ◽  
G. Bormans ◽  
...  
NeuroImage ◽  
2016 ◽  
Vol 139 ◽  
pp. 53-64 ◽  
Author(s):  
Jérémy Pépin ◽  
Laetitia Francelle ◽  
Maria-Angeles Carrillo-de Sauvage ◽  
Lucie de Longprez ◽  
Pauline Gipchtein ◽  
...  

2016 ◽  
Vol 87 (Suppl 1) ◽  
pp. A23.2-A23
Author(s):  
Julien Flament ◽  
Jérémy Pépin ◽  
Laetitia Francelle ◽  
Maria-Angeles Carrillo-de Sauvage ◽  
Lucie de Longprez ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 712
Author(s):  
Ji-Hea Yu ◽  
Bae-Geun Nam ◽  
Min-Gi Kim ◽  
Soonil Pyo ◽  
Jung-Hwa Seo ◽  
...  

White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington’s disease (HD). This study investigated the effects of in vivo expression of reprogramming factor octamer-binding transcription factor 4 (OCT4) on neural stem cell (NSC) niche activation in the subventricular zone (SVZ) and induction of cell fate specific to the microenvironment of HD. R6/2 mice randomly received adeno-associated virus 9 (AAV9)-OCT4, AAV9-Null, or phosphate-buffered saline into both lateral ventricles at 4 weeks of age. The AAV9-OCT4 group displayed significantly improved behavioral performance compared to the control groups. Following AAV9-OCT4 treatment, the number of newly generated NSCs and oligodendrocyte progenitor cells (OPCs) significantly increased in the SVZ, and the expression of OPC-related genes and glial cell-derived neurotrophic factor (GDNF) significantly increased. Further, amelioration of myelination deficits in the corpus callosum was observed through electron microscopy and magnetic resonance imaging, and striatal DARPP32+ GABAergic neurons significantly increased in the AAV9-OCT4 group. These results suggest that in situ expression of the reprogramming factor OCT4 in the SVZ induces OPC proliferation, thereby attenuating myelination deficits. Particularly, GDNF released by OPCs seems to induce striatal neuroprotection in HD, which explains the behavioral improvement in R6/2 mice overexpressing OCT4.


NeuroImage ◽  
2008 ◽  
Vol 41 ◽  
pp. T90 ◽  
Author(s):  
Sean R. Donohue ◽  
S.J. Finnema ◽  
P. Truong ◽  
J. Andersson ◽  
B. Gulyás ◽  
...  

1996 ◽  
Vol 6 ◽  
pp. 130
Author(s):  
N. Ginovart ◽  
A. Lundin ◽  
L. Farde ◽  
C. Halldin ◽  
C.G. Swahn ◽  
...  

Diabetologia ◽  
2019 ◽  
Vol 62 (8) ◽  
pp. 1517-1517
Author(s):  
Midhat H. Abdulreda ◽  
R. Damaris Molano ◽  
Gaetano Faleo ◽  
Maite Lopez-Cabezas ◽  
Alexander Shishido ◽  
...  

2018 ◽  
Author(s):  
Johanna Neuner ◽  
Elena Katharina Schulz-Trieglaff ◽  
Sara Gutiérrez-Ángel ◽  
Fabian Hosp ◽  
Matthias Mann ◽  
...  

AbstractHuntington’s disease (HD) is a devastating hereditary movement disorder, characterized by degeneration of neurons in the striatum and cortex. Studies in human patients and mouse HD models suggest that disturbances of neuronal function in the neocortex play an important role in the disease onset and progression. However, the precise nature and time course of cortical alterations in HD have remained elusive. Here, we use chronicin vivotwo-photon calcium imaging to monitor the activity of single neurons in layer 2/3 of the primary motor cortex in awake, behaving R6/2 transgenic HD mice and wildtype littermates. R6/2 mice show age-dependent changes in neuronal activity with a clear increase in activity at the age of 8.5 weeks, preceding the onset of motor and neurological symptoms. Furthermore, quantitative proteomics demonstrate a pronounced downregulation of synaptic proteins in the cortex, and histological analyses in R6/2 mice and HD patient samples reveal reduced inputs from parvalbumin-positive interneurons onto layer 2/3 pyramidal cells. Thus, our study provides a time-resolved description as well as mechanistic details of cortical circuit dysfunction in HD.Significance statementFuntional alterations in the cortex are believed to play an important role in the pathogenesis of Huntington’s disease (HD). However, studies monitoring cortical activity in HD modelsin vivoat a single-cell resultion are still lacking. We have used chronic two-photon imaging to investigate changes in the activity of single neurons in the primary motor cortex of awake presymptomatic HD mice. We show that neuronal activity increases before the mice develop disease symptoms. Our histological analyses in mice and in human HD autopsy cases furthermore demonstrate a loss inhibitory synaptic terminals from parvalbimun-positive interneurons, revealing a potential mechanism of cortical circuit impairment in HD.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
P. Stepanova ◽  
V. Srinivasan ◽  
D. Lindholm ◽  
M. H. Voutilainen

Abstract Huntington’s disease (HD) is a neurodegenerative disorder with a progressive loss of medium spiny neurons in the striatum and aggregation of mutant huntingtin in the striatal and cortical neurons. Currently, there are no rational therapies for the treatment of the disease. Cerebral dopamine neurotrophic factor (CDNF) is an endoplasmic reticulum (ER) located protein with neurotrophic factor (NTF) properties, protecting and restoring the function of dopaminergic neurons in animal models of PD more effectively than other NTFs. CDNF is currently in phase I–II clinical trials on PD patients. Here we have studied whether CDNF has beneficial effects on striatal neurons in in vitro and in vivo models of HD. CDNF was able to protect striatal neurons from quinolinic acid (QA)-induced cell death in vitro via increasing the IRE1α/XBP1 signalling pathway in the ER. A single intrastriatal CDNF injection protected against the deleterious effects of QA in a rat model of HD. CDNF improved motor coordination and decreased ataxia in QA-toxin treated rats, and stimulated the neurogenesis by increasing doublecortin (DCX)-positive and NeuN-positive cells in the striatum. These results show that CDNF positively affects striatal neuron viability reduced by QA and signifies CDNF as a promising drug candidate for the treatment of HD.


2019 ◽  
Vol 100 (2) ◽  
pp. 64-71
Author(s):  
Olga A. Zhunina ◽  
Nikita G. Yabbarov ◽  
Alexander N. Orekhov ◽  
Alexey V. Deykin

2019 ◽  
Vol 116 (22) ◽  
pp. 10952-10961 ◽  
Author(s):  
Joseph Ochaba ◽  
Gianna Fote ◽  
Marketta Kachemov ◽  
Soe Thein ◽  
Sylvia Y. Yeung ◽  
...  

Neuroinflammation is an important contributor to neuronal pathology and death in neurodegenerative diseases and neuronal injury. Therapeutic interventions blocking the activity of the inflammatory kinase IKKβ, a key regulator of neuroinflammatory pathways, is protective in several animal models of neurodegenerative disease and neuronal injury. In Huntington’s disease (HD), however, significant questions exist as to the impact of blocking or diminishing the activity of IKKβ on HD pathology given its potential role in Huntingtin (HTT) degradation. In cell culture, IKKβ phosphorylates HTT serine (S) 13 and activates HTT degradation, a process that becomes impaired with polyQ expansion. To investigate the in vivo relationship of IKKβ to HTT S13 phosphorylation and HD progression, we crossed conditional tamoxifen-inducible IKKβ knockout mice with R6/1 HD mice. Behavioral assays in these mice showed a significant worsening of HD pathological phenotypes. The increased behavioral pathology correlated with reduced levels of endogenous mouse full-length phospho-S13 HTT, supporting the importance of IKKβ in the phosphorylation of HTT S13 in vivo. Notably, many striatal autophagy genes were up-regulated in HD vs. control mice; however, IKKβ knockout partially reduced this up-regulation in HD, increased striatal neurodegeneration, and enhanced an activated microglial response. We propose that IKKβ is protective in striatal neurons early in HD progression via phosphorylation of HTT S13. As IKKβ is also required for up-regulation of some autophagy genes and HTT is a scaffold for selective autophagy, IKKβ may influence autophagy through multiple mechanisms to maintain healthy striatal function, thereby reducing neuronal degeneration to slow HD onset.


Sign in / Sign up

Export Citation Format

Share Document