scholarly journals In Vivo Expression of Reprogramming Factor OCT4 Ameliorates Myelination Deficits and Induces Striatal Neuroprotection in Huntington’s Disease

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 712
Author(s):  
Ji-Hea Yu ◽  
Bae-Geun Nam ◽  
Min-Gi Kim ◽  
Soonil Pyo ◽  
Jung-Hwa Seo ◽  
...  

White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington’s disease (HD). This study investigated the effects of in vivo expression of reprogramming factor octamer-binding transcription factor 4 (OCT4) on neural stem cell (NSC) niche activation in the subventricular zone (SVZ) and induction of cell fate specific to the microenvironment of HD. R6/2 mice randomly received adeno-associated virus 9 (AAV9)-OCT4, AAV9-Null, or phosphate-buffered saline into both lateral ventricles at 4 weeks of age. The AAV9-OCT4 group displayed significantly improved behavioral performance compared to the control groups. Following AAV9-OCT4 treatment, the number of newly generated NSCs and oligodendrocyte progenitor cells (OPCs) significantly increased in the SVZ, and the expression of OPC-related genes and glial cell-derived neurotrophic factor (GDNF) significantly increased. Further, amelioration of myelination deficits in the corpus callosum was observed through electron microscopy and magnetic resonance imaging, and striatal DARPP32+ GABAergic neurons significantly increased in the AAV9-OCT4 group. These results suggest that in situ expression of the reprogramming factor OCT4 in the SVZ induces OPC proliferation, thereby attenuating myelination deficits. Particularly, GDNF released by OPCs seems to induce striatal neuroprotection in HD, which explains the behavioral improvement in R6/2 mice overexpressing OCT4.

2020 ◽  
Author(s):  
Ji Hea Yu ◽  
Bae-Geun Nam ◽  
MinGi Kim ◽  
Jung Hwa Seo ◽  
Sung-Rae Cho

Abstract Background: White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington’s disease (HD). The HD-induced white matter atrophy is associated with motor deficits. In vivo reprogramming toward a plastic state has emerged as a new approach for treating neurological diseases. Particularly, octamer-binding transcription factor 4 (OCT4) can induce myelin repair and functional recovery. This study investigated the effects of in situ expression of reprogramming factor OCT4 on behavioral performances, neural stem cell (NSC) niche activation in the subventricular zone (SVZ) and induction of cell fate specific to the changed microenvironment of HD. Methods: R6/2 mice, a transgenic mouse model of HD, randomly received adeno-associated virus serotype 9 (AAV9)-OCT4, AAV9-Null, or phosphate-buffered saline in both lateral ventricles at 4 weeks of age. To evaluate the behavioral improvement, rotarod test and grip strength test were performed at regular intervals. To investigate the expression of oligodendrocyte progenitor cell (OPC)-related genes, real-time quantitative reverse transcription PCR (qRT-PCR) and immunohistochemistry were performed. Next, we assessed the amelioration of myelination deficits via transmission electron microscope (TEM) and magnetic resonance imaging (MRI) at 13 weeks of age. Finally, we confimed striatal neuroprotecion by qRT-PCR and confocal microscopy.Results: The AAV9-OCT4 group displayed significantly improved rotarod performance and grip strength compared to the control groups. Following AAV9-OCT4 treatment, the number of newly generated NSCs and OPCs was significantly increased in the SVZ, and the expression of OPC-related genes such as NG2, Olig2, PDGFRα, Wnt3 and myelin regulatory factor (MYRF), and glial cell-derived neuroprotective factor (GDNF) was significantly increased. Further, the amelioration of myelination deficits in the corpus callosum was observed through TEM and MRI, and striatal DARPP32+ GABAergic neurons significantly increased in the AAV9-OCT4 group.


2021 ◽  
pp. 1-8
Author(s):  
Costanza Ferrari Bardile ◽  
Harwin Sidik ◽  
Reynard Quek ◽  
Nur Amirah Binte Mohammad Yusof ◽  
Marta Garcia-Miralles ◽  
...  

Background: The relative contribution of grey matter (GM) and white matter (WM) degeneration to the progressive brain atrophy in Huntington’s disease (HD) has been well studied. The pathology of the spinal cord in HD is comparatively less well documented. Objective: We aim to characterize spinal cord WM abnormalities in a mouse model of HD and evaluate whether selective removal of mutant huntingtin (mHTT) from oligodendroglia rescues these deficits. Methods: Histological assessments were used to determine the area of GM and WM in the spinal cord of 12-month-old BACHD mice, while electron microscopy was used to analyze myelin fibers in the cervical area of the spinal cord. To investigate the impact of inactivation of mHTT in oligodendroglia on these measures, we used the previously described BACHDxNG2Cre mouse line where mHTT is specifically reduced in oligodendrocyte progenitor cells. Results: We show that spinal GM and WM areas are significantly atrophied in HD mice compared to wild-type controls. We further demonstrate that specific reduction of mHTT in oligodendroglial cells rescues the atrophy of spinal cord WM, but not GM, observed in HD mice. Inactivation of mHTT in oligodendroglia had no effect on the density of oligodendroglial cells but enhanced the expression of myelin-related proteins in the spinal cord. Conclusion: Our findings demonstrate that the myelination abnormalities observed in brain WM structures in HD extend to the spinal cord and suggest that specific expression of mHTT in oligodendrocytes contributes to such abnormalities.


1996 ◽  
Vol 6 ◽  
pp. 130
Author(s):  
N. Ginovart ◽  
A. Lundin ◽  
L. Farde ◽  
C. Halldin ◽  
C.G. Swahn ◽  
...  

2018 ◽  
Author(s):  
Johanna Neuner ◽  
Elena Katharina Schulz-Trieglaff ◽  
Sara Gutiérrez-Ángel ◽  
Fabian Hosp ◽  
Matthias Mann ◽  
...  

AbstractHuntington’s disease (HD) is a devastating hereditary movement disorder, characterized by degeneration of neurons in the striatum and cortex. Studies in human patients and mouse HD models suggest that disturbances of neuronal function in the neocortex play an important role in the disease onset and progression. However, the precise nature and time course of cortical alterations in HD have remained elusive. Here, we use chronicin vivotwo-photon calcium imaging to monitor the activity of single neurons in layer 2/3 of the primary motor cortex in awake, behaving R6/2 transgenic HD mice and wildtype littermates. R6/2 mice show age-dependent changes in neuronal activity with a clear increase in activity at the age of 8.5 weeks, preceding the onset of motor and neurological symptoms. Furthermore, quantitative proteomics demonstrate a pronounced downregulation of synaptic proteins in the cortex, and histological analyses in R6/2 mice and HD patient samples reveal reduced inputs from parvalbumin-positive interneurons onto layer 2/3 pyramidal cells. Thus, our study provides a time-resolved description as well as mechanistic details of cortical circuit dysfunction in HD.Significance statementFuntional alterations in the cortex are believed to play an important role in the pathogenesis of Huntington’s disease (HD). However, studies monitoring cortical activity in HD modelsin vivoat a single-cell resultion are still lacking. We have used chronic two-photon imaging to investigate changes in the activity of single neurons in the primary motor cortex of awake presymptomatic HD mice. We show that neuronal activity increases before the mice develop disease symptoms. Our histological analyses in mice and in human HD autopsy cases furthermore demonstrate a loss inhibitory synaptic terminals from parvalbimun-positive interneurons, revealing a potential mechanism of cortical circuit impairment in HD.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
P. Stepanova ◽  
V. Srinivasan ◽  
D. Lindholm ◽  
M. H. Voutilainen

Abstract Huntington’s disease (HD) is a neurodegenerative disorder with a progressive loss of medium spiny neurons in the striatum and aggregation of mutant huntingtin in the striatal and cortical neurons. Currently, there are no rational therapies for the treatment of the disease. Cerebral dopamine neurotrophic factor (CDNF) is an endoplasmic reticulum (ER) located protein with neurotrophic factor (NTF) properties, protecting and restoring the function of dopaminergic neurons in animal models of PD more effectively than other NTFs. CDNF is currently in phase I–II clinical trials on PD patients. Here we have studied whether CDNF has beneficial effects on striatal neurons in in vitro and in vivo models of HD. CDNF was able to protect striatal neurons from quinolinic acid (QA)-induced cell death in vitro via increasing the IRE1α/XBP1 signalling pathway in the ER. A single intrastriatal CDNF injection protected against the deleterious effects of QA in a rat model of HD. CDNF improved motor coordination and decreased ataxia in QA-toxin treated rats, and stimulated the neurogenesis by increasing doublecortin (DCX)-positive and NeuN-positive cells in the striatum. These results show that CDNF positively affects striatal neuron viability reduced by QA and signifies CDNF as a promising drug candidate for the treatment of HD.


2019 ◽  
Vol 100 (2) ◽  
pp. 64-71
Author(s):  
Olga A. Zhunina ◽  
Nikita G. Yabbarov ◽  
Alexander N. Orekhov ◽  
Alexey V. Deykin

2019 ◽  
Vol 116 (22) ◽  
pp. 10952-10961 ◽  
Author(s):  
Joseph Ochaba ◽  
Gianna Fote ◽  
Marketta Kachemov ◽  
Soe Thein ◽  
Sylvia Y. Yeung ◽  
...  

Neuroinflammation is an important contributor to neuronal pathology and death in neurodegenerative diseases and neuronal injury. Therapeutic interventions blocking the activity of the inflammatory kinase IKKβ, a key regulator of neuroinflammatory pathways, is protective in several animal models of neurodegenerative disease and neuronal injury. In Huntington’s disease (HD), however, significant questions exist as to the impact of blocking or diminishing the activity of IKKβ on HD pathology given its potential role in Huntingtin (HTT) degradation. In cell culture, IKKβ phosphorylates HTT serine (S) 13 and activates HTT degradation, a process that becomes impaired with polyQ expansion. To investigate the in vivo relationship of IKKβ to HTT S13 phosphorylation and HD progression, we crossed conditional tamoxifen-inducible IKKβ knockout mice with R6/1 HD mice. Behavioral assays in these mice showed a significant worsening of HD pathological phenotypes. The increased behavioral pathology correlated with reduced levels of endogenous mouse full-length phospho-S13 HTT, supporting the importance of IKKβ in the phosphorylation of HTT S13 in vivo. Notably, many striatal autophagy genes were up-regulated in HD vs. control mice; however, IKKβ knockout partially reduced this up-regulation in HD, increased striatal neurodegeneration, and enhanced an activated microglial response. We propose that IKKβ is protective in striatal neurons early in HD progression via phosphorylation of HTT S13. As IKKβ is also required for up-regulation of some autophagy genes and HTT is a scaffold for selective autophagy, IKKβ may influence autophagy through multiple mechanisms to maintain healthy striatal function, thereby reducing neuronal degeneration to slow HD onset.


2020 ◽  
Vol 57 (4) ◽  
pp. 2038-2047 ◽  
Author(s):  
Daniele Bertoglio ◽  
Jeroen Verhaeghe ◽  
Špela Korat ◽  
Alan Miranda ◽  
Klaudia Cybulska ◽  
...  

AbstractImpairment of group I metabotropic glutamate receptors (mGluRs) results in altered glutamate signalling, which is associated with several neurological disorders including Huntington’s Disease (HD), an autosomal neurodegenerative disease. In this study, we assessed in vivo pathological changes in mGluR1 availability in the Q175DN mouse model of HD using longitudinal positron emission tomography (PET) imaging with the radioligand [11C]ITDM. Ninety-minute dynamic PET imaging scans were performed in 22 heterozygous (HET) Q175DN mice and 22 wild-type (WT) littermates longitudinally at 6, 12, and 16 months of age. Analyses of regional volume of distribution with an image-derived input function (VT (IDIF)) and voxel-wise parametric VT (IDIF) maps were performed to assess differences between genotypes. Post-mortem evaluation at 16 months was done to support in vivo findings. [11C]ITDM VT (IDIF) quantification revealed higher mGluR1 availability in the brain of HET mice compared to WT littermates (e.g. cerebellum: + 15.0%, + 17.9%, and + 17.6% at 6, 12, and 16 months, respectively; p < 0.001). In addition, an age-related decline in [11C]ITDM binding independent of genotype was observed between 6 and 12 months. Voxel-wise analysis of parametric maps and post-mortem quantifications confirmed the elevated mGluR1 availability in HET mice compared to WT littermates. In conclusion, in vivo measurement of mGluR1 availability using longitudinal [11C]ITDM PET imaging demonstrated higher [11C]ITDM binding in extra-striatal brain regions during the course of disease in the Q175DN mouse model.


Sign in / Sign up

Export Citation Format

Share Document