Bearing failure of composite bolted joints with non-uniform bolt-to-washer clearance

2000 ◽  
Vol 31 (6) ◽  
pp. 609-615 ◽  
Author(s):  
Liyong Tong
2020 ◽  
pp. 002199832097973
Author(s):  
Qijian Liu ◽  
Hu Sun ◽  
Yuan Chai ◽  
Jianjian Zhu ◽  
Tao Wang ◽  
...  

Bearing damage is one of the common failure modes in composite bolted joints. This paper describes the development of an on-site monitoring method based on eddy current (EC) sensing film to monitor the bearing damage in carbon fiber reinforced plastic (CFRP) single-lap bolted joints under tensile testing. Configuration design and operating principles of EC array sensing film are demonstrated. A series of numerical simulations are conducted to analyze the variation of EC when the bearing failure occurs around the bolt hole. The results of damage detection in the horizontal direction and through the thickness direction in the bolt hole with different exciting current directions are presented by the finite element method (FEM). Experiments are performed to prove the feasibility of the proposed EC array sensing film when the bearing failure occurs in CFRP single-lap bolted joints. The results of numerical simulations and experiments indicate that bearing failure can be detected according to the variation of EC in the test specimen.


2020 ◽  
Vol 14 (4) ◽  
pp. 7389-7395
Author(s):  
H. Ahmad ◽  
K. Supar

Application of woven fabric kenaf fibers in production of polymeric composites (known as woven fabric kenaf reinforced composite (WKRP)) were readily available in the literatures due to excellent tensile strength and elongation at break. Nevertheless, there are less reported work and information regarding to performance of these materials in bolted joints problem. Bolted joints demonstrate complicated damage morphologies either net-tension, shear-out or bearing failure modes dependence upon combination arrays of lay-up/joint variables. XFEM approach has been reported in the literature, yet the agreements are limited to net-tension failure resulting from stress concentration problem. The aim of this paper to carry out strength prediction work of single-lap WKRP/aluminium bolted joints by using Hashin formulation within 3D finite element framework. Hashin formulation which based on ply-by-ply basis seen to perform better prediction to bearing failure modes. The material properties incorporated within Hashin formulation was taken from a single-ply of woven fabric. Strength prediction from Hashin formulation showed a difference of less than ±25% in net tension-bearing failure mode, but less good predictions (some lay-up showed discrepancies of 50%) in smaller W/d to give net-tension mode. Good prediction in net-tension-bearing failure were exhibited in Hashin formulation than XFEM approach as bearing failure is based on ply-by-ply basis due to fiber kinking and matrix compression.


2015 ◽  
Vol 125 ◽  
pp. 60-71 ◽  
Author(s):  
Zlatan Kapidžić ◽  
Hans Ansell ◽  
Joakim Schön ◽  
Kjell Simonsson

Author(s):  
Calin-Dumitru Coman ◽  
Dan Mihai Constantinescu

This paper presents the effects of temperature on the damage initiation and growth in the carbon fiber-reinforced polymer composite laminate of a hybrid aluminum–composite countersunk bolted joints designed for the bearing failure mode. Strain gage measurements conducted using an Instron testing machine coupled to a temperature-controlled chamber together with a detailed three-dimensional finite element model incorporating geometric, material and friction-based full contact nonlinearities are used to investigate the temperature effects on the progressive damage analysis of the orthotropic material model. The progressive damage analysis material model integrates the lamina nonlinear shear deformation, Hashin-type failure criteria and strain-based continuum degradation rules, being developed using the UMAT user subroutine in the MSC Patran-Nastran (MSC Software Corporation) commercial software. The results showed that the temperature effects on damage initiation and failure modes are quite accurately predicted by the progressive damage analysis material model, which proved to be computationally efficient and therefore can predict failure propagation and damage mechanisms. A low temperature increases the limit and ultimate forces and produces net-section failure, while a high temperature favors a bearing failure and even shear-out of the composite adherend of the hybrid aluminum–composite countersunk bolted joint.


2020 ◽  
Vol 247 ◽  
pp. 112476 ◽  
Author(s):  
Thomas Feser ◽  
Jazib Hassan ◽  
Matthias Waimer ◽  
Ronan M. O'Higgins ◽  
Conor T. McCarthy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document