bearing failure
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 77)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Qi Liu ◽  
Baiqi Huo ◽  
Yunsheng Liu ◽  
Junchao Zhu

Purpose The edge of diesel engine crankshaft main bearing is more likely to fail in its real working condition. This paper aims to study the bearing failure mechanism by finding the relationship between bearing lubrication characteristics and its working condition. Design/methodology/approach This work builds the mixed lubrication model of crankshaft bearing to analyze the cause of bearing abnormal wear, and the finite difference method was used to solving the average Reynolds equation. During the analysis, journal misaligned angle, external load and roughness are considered. Findings The result shows that the wear of the diesel engine crankshaft bearing happens in engine startup phase and the bottom of the bearing are more prone to be excessively worn. Under the influence of journal misalignment, bearing asperity contact load and speed range of mixed lubrication will increase markedly. The edge of the bearing will be excessively worn. The effect of misalignment on bearing lubrication performance varies under different shaft rotation speed. Originality/value The former research studies on crankshaft bearing either just focused on its lubrication characteristics or interested in its failure types (wear, adhere, cavitation). This paper studies the relationship between bearing failure mechanism and lubrication performance.


2022 ◽  
Author(s):  
Jim Lua ◽  
Xiaodong Cui ◽  
Jian Xiao ◽  
Ning Liu ◽  
Supun Kariyawasam ◽  
...  

2021 ◽  
Author(s):  
Mohammed Al-SAAD ◽  
MOHAMMED Al-Mosallam ◽  
Ahmed Alsahlani

Abstract The common mechanical defect of rotating machinery is bearing failure which is considered the most common failure mode in rotating machinery. This kind of failure can lead to large losses as financial during work. Early detection of different faults in rotating machines such as bearing fault, misalignment, and others is considered one of the techniques in which is achieved by further signal processing techniques. Thus, using statistical methods such as reverse arrangement tests (RAT) to obtain the best a feature associated with these different faults is the perfect solution to find the failure which is widespread in the early detection of a fault. This type of feature will be used in Artificial Neural networks (ANN) as input for auto diagnosis. These characteristics are independently associated with different types of fault. Using RAT is considered very important in the process of linking different kinds of failures with the most important features.


2021 ◽  
Vol 6 (7) ◽  
pp. 87-90
Author(s):  
Mohsin H. Albdery ◽  
Istvan Szabo

Any single machine rotary component in the process could result in downtime costs. It is necessary to monitor the overall machine health while it is in use. Bearing failure is one of the primary causes of machine breakdown in industry at high and low speeds. A vibration signature evaluation has historically determined misalignments in shafting systems. These misalignments are also responsible for the bearing increase in temperature. The purpose of this work is to undertake a comparative study to obtain the reliability of the effect of the amount of misalignment on bearing by using thermography measurement. An experimental study was performed in this paper to indicate the existence of machine misalignment at an early stage by measuring the bearing temperature using a thermal imaging camera. The effects of load, velocity, and misalignment on the bearings and their temperature increase have been investigated. The test bench's rolling-element bearing is an NTN UCP213-208 pillow block bearing. It has been observed that by tracking the change of temperature in bearings could lead to misalignment detection and the effect of the amount of misalignment on it.


Author(s):  
Edward Smith ◽  
Abdelmalek Bouazza ◽  
Louis King ◽  
R. Kerry Rowe

The observation of failure surfaces within column supported embankments is critical to understanding how the embankment stresses are transferred towards the column heads. In this study, finite element simulations utilising a strain softening constitutive model, non-local regularisation and the Arbitrary Lagrangian-Eulerian formulation are used to examine these failure surfaces over various embankment geometries. This methodology offers insights into the nature of the failure mechanism, the development of a plane of equal settlement and the influence of the subsoil settlement profile. Depending on the embankment geometry, the results indicate either a punching failure, inverted general bearing failure, or a localised failure develops. The transition between punching and inverted general bearing failure is found to be closely related to the establishment of a plane of equal settlement within the embankment. The height of the plane of equal settlement and the range of failure mechanisms that develop were largely insensitive to the nature of the subsoil settlement profiles simulated. These findings have implications for the practical design of efficient embankments and the effective design of future experimental studies.


2021 ◽  
Author(s):  
XIAODONG CUI ◽  
JIAN XIAO ◽  
JIM LUA ◽  
SUPUN KARIYAWASAM ◽  
ETHAN FULGHUM ◽  
...  

To investigate the failure mechanism in composite bolted joints, an in-situ X-Ray computed tomography (XCT) technique was developed and single shear bearing (SSB) tests were performed with quasi-isotropic layup. High-fidelity XCT was explored for the detection and characterization of bearing failure in bolted composite components without removing the fastener. A novel load frame was also introduced for in-situ XCT scan and a preliminary scan was performed. A micro-macro coupling modeling approach was proposed on the basis of continuum damage mechanics (CDM) method and a static bearing model, which was based on micromechanics analysis to consider the residual stress after fiber kinking and matrix cracking under compression in the bearing region. The SSB specimens were modified using a larger bolt diameter to avoid bolt failure and achieve extensive bearing failure. The developed modeling approach was verified using SSB test data by comparing the predicted load displacement response with experimental measurement and the failure patterns obtained from XCT scanning images.


2021 ◽  
Vol 2018 (1) ◽  
pp. 012011
Author(s):  
Elisha de Mello ◽  
Georgios Kampolis ◽  
Edward Hart ◽  
Daryl Hickey ◽  
Iain Dinwoodie ◽  
...  

Arthroplasty ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sravya P. Vajapey ◽  
Paul M. Alvarez ◽  
Douglas Chonko

Abstract Background We present two cases of unicompartmental knee arthroplasty (UKA) bearing failure in this report—one case of bearing dislocation and one case of bearing fracture. The causes of failure in both cases are evaluated in depth and recommendations are provided regarding intraoperative technique to reduce risk of bearing failure in mobile bearing UKAs. Case presentation In the first case, intraoperative evidence of metallosis and chronic pain preceding the traumatic event may indicate that the patient had attenuation of her collateral ligaments that precipitated the instability event. In the second case, the relatively atraumatic nature of the bearing fracture-dislocation and intraoperative evidence of extensive poly wear suggest that the bearing fracture was likely due to a 3-mm bearing selection in the initial surgery. Conclusions This case report shows that late bearing in mobile bearing unicompartmental knee arthroplasty can often be a multifactorial event and treatment must address all the risk factors that led to bearing dislocation. Bearing fracture is a very rare complication associated with mobile bearing UKA and patients with thin polyethylene inserts are at risk for bearing fracture even in the absence of poly wear.


Sign in / Sign up

Export Citation Format

Share Document