array sensing
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 20)

H-INDEX

11
(FIVE YEARS 4)

Author(s):  
Geng Liu ◽  
Weili Jiang ◽  
Xudong Zheng ◽  
Qian Xue

Abstract Phocid seals detect and track artificial or biogenic hydrodynamic trails based on mechanical signals of their whisker arrays. In this paper, we investigated the correlations between flow structures and whisker array signals using a simplified numerical model of fluid-structure interaction (FSI). Three-dimensional (3D) wakes of moving paddles in three different shapes (rectangular plate, undulated plate, and circular cylinder) were simulated using an in-house immersed-boundary-method-based computational fluid dynamics (CFD) solver. One-way FSI was then simulated to obtain the dynamic behavior and root signal of each whisker in the two whisker arrays on a seal head in each wake. The position, geometry, and material of each whisker were modeled based on the measurements reported in literatures. The correlations between the wake structures and whisker array signals were analyzed. It was found that the patterns of the signals on the whisker arrays can reflect the strength, timing, and moving trajectories of the jets induced by the vortices in the wakes. Specifically, the rectangular plate generates the strongest starting vortex ring as well as the strongest jets, while the undulated plate generates the weakest ones. These flow features are fully reflected by the largest whisker signal magnitude in the rectangular plate sensing and the smallest one in the undulated plate sensing. Moreover, the timing of the signal initiation and the maximum signal agree well with the timing of the jet reaching the arrays and the maximum flow speed, respectively. The correlation coefficient between the moving trajectories of the jet and the movement of the high signal level region in the array was found to be higher than 0.9 in the rectangular plate case. The results provide a physical insight into the mechanisms of seal whisker flow sensing.


2021 ◽  
Author(s):  
José Wilfredo González ◽  
Alejandro Jose Linares ◽  
Diego Armando Rodriguez ◽  
Gerson Orlando Rivera ◽  
Virginie M. Schoepf ◽  
...  

Abstract The objective of this paper is to depict the quantification of the production rates of the different phases in deviated wells with high gas-liquid relation using the Flow Array Sensing Tool (FAST). The readings of standard Production Logging Tools (fullbore flowmeter, density, and capacitance) are centralized, therefore they are affected if there is re-circulation of the heavy phase (liquid). The phase segregation and possible apparent down flow of the heavy phase makes it very difficult to determine the distribution of the produced fluids, and in some cases the spinner flowmeter tends to stop or gives inaccurate readings. The cause of these inaccurate readings is that the centralized spinner is affected by positive flow in the high side and negative flow in the low side of the wellbore, and the spinner shows no flow or even apparent downhole flow, when there is a real positive flow. The FAST tool used during the acquisition of the production logs is an ultracompact production logging tool (3 ft long) that is capable to measure multiphase flows with an array of 8 sensors, two in each arm and located 90° apart. These sensors are based on MEMS (Microelectromechanichal Systems), and among the interchangeable sensors we have optical probes that takes ultra-rapid measurements of the refractive index and can determine hold-up of water, oil and gas; the electrical probes that measures conductivity to differentiate hydrocarbons from water, and magnetic probes with micro-spinners to determine the flow rate. Both the three phase optical probes and the electrical probes have excellent response including water hold-ups over 90% that cannot be measured with a standard capacitance tool. The data logged with FAST in deviated wells was processed and interpreted to obtain the apparent flow velocity profiles of each of the 4 micro-spinners and with the three phase optical probes, and the relative bearing curves the velocity maps, and hold-up maps where obtained. The velocity map showed that there was negative flow in the low side of the well and positive flow in the high side while the hold-up map showed the light phase (gas) in the high side of the well. Both maps showed clearly the flow pattern and were used to quantify the production of each perforation and the total rate matched closely the surface rate (within 2% deviation). With the hold-up and velocity maps, the real flow rates were obtained with high confidence, and the flow pattern were shown clearly in deviated wells. The three phase optical probes, and electrical probes are excellent indicators of water and hydrocarbons inflow in a wide range of hold-ups.


Author(s):  
Lei Hou ◽  
Xinli Du ◽  
Nikolaos V. Boulgouris ◽  
Nauman Hafeez ◽  
Chris Coulson ◽  
...  

Purpose During insertion of the cochlear implant electrode array, the tip of the array may fold back on itself and can cause serious complications to patients. This article presents a sensing system for cochlear implantation in a cochlear model. The electrode array fold-over behaviors can be detected by analyzing capacitive information from the array tip. Method Depending on the angle of the array tip against the cochlear inner wall when it enters the cochlear model, different insertion patterns of the electrode array could occur, including smooth insertion, buckling, and fold-over. The insertion force simulating the haptic feedback for surgeons and bipolar capacitance signals during the insertion progress were collected and compared. The Pearson correlation coefficient (PCC) was applied to the collected capacitive signals to discriminate the fold-over pattern. Results Forty-six electrode array insertions were conducted and the deviation of the measured insertion force varies between a range of 20% and 30%. The capacitance values from electrode pair (1, 2) were recorded for analyzing. A threshold for the PCC is set to be 0.94 that can successfully discriminate the fold over insertions from the other two types of insertions, with a success rate of 97.83%. Conclusions Capacitive measurement is an effective method for the detection of faulty insertions and the maximization of the outcome of cochlear implantation. The proposed capacitive sensing system can be used in other tissue implants in vessels, spinal cord, or heart.


2021 ◽  
Vol 26 (1) ◽  
pp. 101-110
Author(s):  
Wei Ling Liu ◽  
Xiao Hong Han ◽  
Ling Zhen Yang ◽  
Xiao Ming Chang

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Lei Hou ◽  
Xinli Du ◽  
Nikolaos Boulgouris ◽  
Chris Coulson ◽  
Richard Irving ◽  
...  

The Analyst ◽  
2021 ◽  
Author(s):  
Jiawei Qi ◽  
Pinhua Rao ◽  
Lele Wang ◽  
Li Xu ◽  
Yanli Wen ◽  
...  

Pattern recognition, also called “array sensing” is a recognition strategy with a wide and expandable analysis range, based on the high-throughput analysis data. In this work, we constructed a sensor...


2020 ◽  
pp. 002199832097973
Author(s):  
Qijian Liu ◽  
Hu Sun ◽  
Yuan Chai ◽  
Jianjian Zhu ◽  
Tao Wang ◽  
...  

Bearing damage is one of the common failure modes in composite bolted joints. This paper describes the development of an on-site monitoring method based on eddy current (EC) sensing film to monitor the bearing damage in carbon fiber reinforced plastic (CFRP) single-lap bolted joints under tensile testing. Configuration design and operating principles of EC array sensing film are demonstrated. A series of numerical simulations are conducted to analyze the variation of EC when the bearing failure occurs around the bolt hole. The results of damage detection in the horizontal direction and through the thickness direction in the bolt hole with different exciting current directions are presented by the finite element method (FEM). Experiments are performed to prove the feasibility of the proposed EC array sensing film when the bearing failure occurs in CFRP single-lap bolted joints. The results of numerical simulations and experiments indicate that bearing failure can be detected according to the variation of EC in the test specimen.


2020 ◽  
Vol 8 ◽  
Author(s):  
Yang Liu ◽  
Xiuting Li ◽  
Jie Chen ◽  
Chonglin Yuan

Due to the rapid development of micro/nano manufacturing techniques and the greater understanding in electrochemical principles and methods, micro/nano electrode array sensing has received much attention in recent years, especially in bioanalysis. This review aims to explore recent progress in innovative techniques for the construction of micro/nano electrode array sensor and the unique applications of various types of micro/nano electrode array sensors in biochemical analysis. Moreover, the new area of smart sensing benefited from miniaturization of portable micro/nano electrode array sensors as well as wearable intelligent devices are further discussed.


Sign in / Sign up

Export Citation Format

Share Document