kenaf fibers
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 46)

H-INDEX

23
(FIVE YEARS 5)

2021 ◽  
Vol 2080 (1) ◽  
pp. 012013
Author(s):  
Rohani Mustapha ◽  
Siti Noor Hidayah Mustapha ◽  
M. J Suriani ◽  
C. M. Ruzaidi ◽  
M Awang

Abstract The use of fiber-reinforced vegetable oil - polymer composites has increased in various technical fields. However, the long-term operating performance of these materials is still not well understood, limiting the development of these composites. In this study, the water absorption performance of hybrid composites, which consist of kenaf fiber and glass fiber as reinforcement, epoxy resin and acrylated epoxidized palm oil (AEPO) as a matrix, and montmorillonite (MMT) nano clays as a filler was evaluated with the function of different fibers layering order. The hand lay-up method is used to produce the composites with the variable number of kenaf fibers and glass fibers layer sequences. The water absorption kinetics of epoxy/AEPO reinforced hybrid kenaf/glass fiber-filled MMT composites are described in this paper. It has been observed that the water absorption rate of the composites depends on the fiber layering sequences. The alternative sequence of Glass-Kenaf-Kenaf-Glass and Kenaf-Glass-Kenaf-Glass composites layers exhibited the lowest moisture absorption rates of 7.61% and 7.63%, respectively.


Author(s):  
Nur Aliya Ibrahim ◽  
Rabihah Alawi ◽  
Yanti Johari ◽  
Nor Aidaniza Abdul Muttlib ◽  
Mohd Nazrulhuzaimi Md Yusoff

Abstract Objective This study aimed to evaluate the flexural and compressive strength of kenaf-reinforced composite resin as well as analyze the length and diameter of kenaf fibers and their surface topography. Materials and Methods Kenaf fibers were alkaline treated and wetted with coupling agent. Kenaf-reinforced composite resin was fabricated manually. Specimens for kenaf-reinforced composite resin (Tetric N Flow [Ivoclar Vivadent, Liechtenstein] + 2% kenaf) and control group (Tetric N Flow [Ivoclar Vivadent, Liechtenstein]) were prepared using stainless steel molds with dimension of 25 mm × 2 mm × 2 mm and 6 mm × 4 mm for flexural and compressive strength tests, respectively, and tested using Instron Universal Testing Machine (Shimadzu, Japan). Raw kenaf fibers, treated kenaf fibers, and fractured sample from flexural strength test were analyzed using scanning electron microscopy (SEM) (FEI Quanta FEG 450, United States). Data were analyzed using independent sample t-test. Significant level was set at p < 0.05. Results Kenaf-reinforced composite resin has a lower flexural and compressive strength than the control group (p < 0.05). SEM analysis revealed the average fibers’ length to be 1.24 mm and diameter ranging from 6.56 to 12.9 μm. The fibers dispersed in composite as single strand or a bundle with a minimal gap between fibers and composite. Conclusion Flexural and compressive strengths of kenaf-reinforced composite resin were lower than the control group, despite some adaptation between kenaf fibers and composite noted. The fibers’ length and diameter were reasonable for the dispersion in the resin matrix; however, additional treatments of kenaf are required for a favorable result.


2021 ◽  
Vol 1962 (1) ◽  
pp. 012013
Author(s):  
A O Baarimah ◽  
S M Syed Mohsin ◽  
W S Alaloul ◽  
M S Ba-naimoon

Author(s):  
Mr. Saurav Sariyal

The need for eco-friendly materials is increasing in the automobile and aerospace sectors. Material selection for automobile components is influenced by various factors such as cost, weight and strength. Natural fibers offer various advantages over conventional materials such as environment friendly, easily available, recyclable and higher specific strength. Among the natural fibers Sisal and Kenaf fibers are selected for present study due to their good mechanical properties and availability. Kenaf fibers have great potential to be used as construction and automotive materials due to their long fibers which are derived from the bast. Sisal fibers do not absorb moisture and possess good impact, sound absorbing properties and high fire resistance properties. Epoxy LY556 is selected as matrix material to bind the combination of these two natural fibers due to its high temperature resistance and adherence to reinforcements. This project aim is to development of a new hybrid natural composite made of Sisal and Kenaf for automobile application. Static analysis of specimen will be perform utilizing in ANSYS 19 software to determine force reaction for specified displacement with both composite materials along with stress concentration effect with deformation. Results and end will be drawn by looking at systematic and experimental esteems.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2005
Author(s):  
Nur Farhani Ismail ◽  
Nabilah Afiqah Mohd Radzuan ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Che Hassan Che Haron

The use of kenaf fiber as a reinforcement material for polymer composites is gaining popularity, especially in the production of automotive components. The main objective of this current work is to relate the effect of alkali treatment on the single fiber itself and the composite material simultaneously. The effect of temperature condition during mechanical testing is also investigated. Composite materials with discontinuous natural kenaf fibers and epoxy resin were fabricated using a compression moulding process. The epoxy composites were reinforced with 50 wt% untreated and treated kenaf fibers. The kenaf fiber was treated with NaOH solution (6% by weight) for 24 h at room temperature. Kenaf fiber treated with NaOH treatment had a clean surface and no impurities. For the first time we can see that alkali treatment had a damaging effect on the mechanical properties of kenaf fibers itself and the treated kenaf/epoxy composites. The composite reinforced with untreated kenaf fiber and treated kenaf fiber showed increased tensile strength (72.85% and 12.97%, respectively) compared to the neat epoxy. Reinforcement of the composite with treated kenaf fiber decreased the tensile strength due to the fiber pull out and the formation of voids which weakens the adhesion between the fibers and matrix. The temperature conditions also play an important role in composites with a significant impact on the deterioration of composite materials. Treated kenaf fiber has thermal stability and is not sensitive to temperature and as a result reinforcement with treated kenaf gives a lower loss value of 76%.


2021 ◽  
pp. 009524432110153
Author(s):  
Jaber Mirzaei ◽  
Abdolhossein Fereidoon ◽  
Ahmad Ghasemi-Ghalebahman

In this study, the mechanical properties of polypropylene (PP)-based nanocomposites reinforced with graphene nanosheets, kenaf fiber, and polypropylene-grafted maleic anhydride (PP-g-MA) were investigated. Response surface methodology (RSM) based on Box–Behnken design (BBD) was used as the experimental design. The blends fabricated in three levels of parameters include 0, 0.75, and 1.5 wt% graphene nanosheets, 0, 7.5, and 15 wt% kenaf fiber, and 0, 3, and 6 wt% PP-g-MA, prepared by an internal mixer and a hot press machine. The fiber length was 5 mm and was being constant for all samples. Tensile, flexural, and impact tests were conducted to determine the blend properties. The purpose of this research is to achieve the highest mechanical properties of the considered nanocomposite blend. The addition of graphene nanosheets to 1 wt% increased the tensile, flexural, and impact strengths by 16%, 24%, and 19%, respectively, and an addition up to 1.5 wt% reduced them. With further addition of graphene nanosheets until 1.5 wt%, the elastic modulus was increased by 70%. Adding the kenaf fiber up to 15 wt% increased the elastic modulus, tensile, flexural, and impact strength by 24%, 84%, 18%, and 11%, respectively. The addition of PP-g-MA has increased the adhesion, dispersion and compatibility of graphene nanosheets and kenaf fibers with matrix. With 6 wt% PP-g-MA, the tensile strength and elastic modulus were increased by 18% and 75%, respectively. The addition of PP-g-MA to 5 wt% increased the flexural and impact strengths by 10% and 5%, respectively. From the entire experimental data, the optimum values for elastic modulus, as well as, tensile, flexural, and impact strengths in the blends were obtained to be 4 GPa, 33.7896 MPa, 57.6306 MPa, and 100.1421 J/m, respectively. Finally, samples were studied by FE-SEM to check the dispersion of graphene nanosheets, PP-g-MA and kenaf fibers in the polymeric matrix.


Silicon ◽  
2021 ◽  
Author(s):  
Tahar Merizgui ◽  
Abdechafik Hadjadj ◽  
Bachir Gaoui ◽  
Tamer A. Sebaey ◽  
V. R. Arun Prakash ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document