Formation of ultrathin silicon oxides—modeling and technological constraints

2003 ◽  
Vol 6 (1-3) ◽  
pp. 49-57 ◽  
Author(s):  
Romuald B. Beck
2020 ◽  
pp. 37-42
Author(s):  
O. N. Kanygina ◽  
◽  
M. M. Filyak ◽  
A. G. Chetverikova ◽  
◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 2666
Author(s):  
Hafiz Muhammad Usama Hassan Alvi ◽  
Muhammad Shahid Farid ◽  
Muhammad Hassan Khan ◽  
Marcin Grzegorzek

Emerging 3D-related technologies such as augmented reality, virtual reality, mixed reality, and stereoscopy have gained remarkable growth due to their numerous applications in the entertainment, gaming, and electromedical industries. In particular, the 3D television (3DTV) and free-viewpoint television (FTV) enhance viewers’ television experience by providing immersion. They need an infinite number of views to provide a full parallax to the viewer, which is not practical due to various financial and technological constraints. Therefore, novel 3D views are generated from a set of available views and their depth maps using depth-image-based rendering (DIBR) techniques. The quality of a DIBR-synthesized image may be compromised for several reasons, e.g., inaccurate depth estimation. Since depth is important in this application, inaccuracies in depth maps lead to different textural and structural distortions that degrade the quality of the generated image and result in a poor quality of experience (QoE). Therefore, quality assessment DIBR-generated images are essential to guarantee an appreciative QoE. This paper aims at estimating the quality of DIBR-synthesized images and proposes a novel 3D objective image quality metric. The proposed algorithm aims to measure both textural and structural distortions in the DIBR image by exploiting the contrast sensitivity and the Hausdorff distance, respectively. The two measures are combined to estimate an overall quality score. The experimental evaluations performed on the benchmark MCL-3D dataset show that the proposed metric is reliable and accurate, and performs better than existing 2D and 3D quality assessment metrics.


2012 ◽  
Vol 22 (10) ◽  
pp. 2123-2128 ◽  
Author(s):  
Henry Medina ◽  
Yung-Chang Lin ◽  
Chuanhong Jin ◽  
Chun-Chieh Lu ◽  
Chao-Hui Yeh ◽  
...  

2013 ◽  
Vol 55 (3) ◽  
pp. 529-535 ◽  
Author(s):  
O. M. Golitsyna ◽  
S. N. Drozhdin ◽  
V. N. Nechaev ◽  
A. V. Viskovatykh ◽  
V. M. Kashkarov ◽  
...  

Author(s):  
А.А. Петухов

Статья посвящена синтезу многослойных диэлектрических отражательных дифракционных решеток, с высокой эффективностью обеспечивающих спектральное сложение пучков с различной длиной волны в заданном дифракционном порядке. Приводятся результаты решения задачи синтеза многослойных диэлектрических дифракционных решеток, обеспечивающих спектральное сложение в первом или минус первом порядке дифракции. Кроме того, решается задача синтеза для таких решеток с учетом возможных технологических ограничений на высоту профиля (глубину травления). Решение задачи синтеза проводится путем минимизации зависящего от параметров решетки целевого функционала методом Нелдера-Мида. Решение прямой задачи на каждом шаге минимизации осуществляется при помощи комбинации неполного метода Галеркина и метода матриц рассеяния. The paper is devoted to the synthesis of multilayer dielectric reflection diffraction gratings providing high-efficiency spectral combining of the beams with different wavelengths in a given diffraction order. The results are presented for solving the synthesis problems for multilayer dielectric diffraction gratings providing spectral combining in the first or minus first diffraction order. Besides, the synthesis problem for such gratings is solved with account taken of possible technological constraints imposed by the height of the grating profile (etch depth). The solution of the synthesis problem is obtained by means of Nelder-Mead minimization of the merit function depending on the grating parameters. At each minimization step the direct problem is solved using a combination of the incomplete Galerkin method and scattering matrix method.


Author(s):  
Hoda Mamdouh Hassan

Designing future computer networks dictates an eclectic vision capable of encompassing ideas and concepts developed in contemporary research unfettered by today’s operational and technological constraints. However, unguided by a clear articulation of core design principles, the process of network design may be at stake of falling into similar pitfalls and limitations attributed to current network realizations. This chapter presents CORM: a clean-slate Concern-Oriented Reference Model for architecting future computer networks. CORM stands as a guiding framework from which several network architectures can be derived. CORM represents a pioneering attempt within the network realm, and to the author’s knowledge, CORM is the first reference model that is bio-inspired, accounts for complex system characteristics, and applies a software engineering approach to network design. Moreover, CORM’s derivation process conforms to the Function-Behavior-Structure (FBS) engineering framework, which is credited to be applicable to any engineering discipline for reasoning about, and explaining the process of design.


Sign in / Sign up

Export Citation Format

Share Document