Phytopigments and fatty acids as molecular markers for the quality of near-bottom particulate organic matter in the North Sea

1996 ◽  
Vol 35 (4) ◽  
pp. 279-291 ◽  
Author(s):  
A.R. Boon ◽  
G.C.A. Duineveld
2010 ◽  
Vol 7 (4) ◽  
pp. 1357-1373 ◽  
Author(s):  
N. Greenwood ◽  
E. R. Parker ◽  
L. Fernand ◽  
D. B. Sivyer ◽  
K. Weston ◽  
...  

Abstract. This paper presents new results from high temporal resolution observations over two years (2007 and 2008) from instrumented moorings deployed in the central North Sea, at the Oyster Grounds and on the northern slope of Dogger Bank (North Dogger). The water column was stratified in the summer at both sites, leading to limited exchange of the water in the bottom mixed layer. Data from these moorings revealed the variable nature of summer oxygen depletion at the Oyster Grounds. The combination of in situ and ship-based measurements allowed the physical and biological conditions leading to decreasing dissolved oxygen concentrations in bottom water to be examined. In 2007 and 2008, the concentration of dissolved oxygen in the bottom water at both sites was observed to decrease throughout the summer period after the onset of stratification. Depleted dissolved oxygen concentration (6.5 mg l−1, 71% saturation) was measured at the North Dogger, a site which is not significantly influenced by anthropogenic nutrient inputs. Lower oxygen saturation (5.2 mg l−1, 60% saturation) was measured for short durations at the Oyster Grounds. The seasonal increase in bottom water temperature accounted for 55% of the decrease in dissolved oxygen concentration at the Oyster Grounds compared to 10% at North Dogger. Dissolved oxygen concentration in bottom water at the Oyster Grounds was shown to be strongly influenced by short term events including storms and pulses of particulate organic matter input. In contrast, dissolved oxygen concentration in bottom water at the North Dogger reflected longer seasonal processes such as a gradual temperature increase over the summer and a more steady supply of particulate organic matter to the bottom mixed layer. The differences between the study sites shows the need for an improved understanding of the mechanisms driving these processes if the use of oxygen in marine management and ensuring ecosystem health is to be meaningful and successful in the future. These high frequency observations provide greater understanding of the nature of the depletion in bottom oxygen concentration in the North Sea.


1991 ◽  
Vol 24 (10) ◽  
pp. 269-276
Author(s):  
J. R. Lawrence ◽  
N. C. D. Craig

The public has ever-rising expectations for the environmental quality of the North Sea and hence of everreducing anthropogenic inputs; by implication society must be willing to accept the cost of reduced contamination. The chemical industry accepts that it has an important part to play in meeting these expectations, but it is essential that proper scientific consideration is given to the potential transfer of contamination from one medium to another before changes are made. A strategy for North Sea protection is put forward as a set of seven principles that must govern the management decisions that are made. Some areas of uncertainty are identified as important research targets. It is concluded that although there have been many improvements over the last two decades, there is more to be done. A systematic and less emotive approach is required to continue the improvement process.


2000 ◽  
Vol 251-252 ◽  
pp. 5-8 ◽  
Author(s):  
C Neal ◽  
W.A House ◽  
G.J.L Leeks ◽  
B.A Whitton ◽  
R.J Williams

2020 ◽  
Vol 8 (1) ◽  
pp. T77-T88 ◽  
Author(s):  
Mahboubeh Montazeri ◽  
Lars Ole Boldreel ◽  
Anette Uldall ◽  
Lars Nielsen

Development of salt diapirs affects the hydrocarbon trapping systems in the Danish sector of the North Sea, where the reservoirs mainly consist of chalk. Seismic imaging and interpretation of the salt structures are challenging, primarily due to the complex geometry of the salt bodies and typically strong velocity contrast with the neighboring sediment layers. The quality of seismic imaging in the North Sea is highly dependent on the quality of the estimated velocity model. We have studied diffracted arrivals originating from the salt flanks and adjacent sedimentary structures using a diffraction imaging technique. The diffracted waves carry valuable information regarding seismic velocity and the location of geologic discontinuities, such as faults, fractures, and salt delimitations. We apply a plane-wave destruction method to separate diffractions from our stacked data. We optimize imaging based on diffraction analysis by using a velocity continuation migration technique, which leads to an estimation of the optimum focusing velocity model. We determine that the diffraction-based approach significantly improves the seismic imaging adjacent to the salt diapirs and the neighboring layers when compared with a standard approach in which we mostly ignore the diffractions. The new poststack time-migrated results provide detailed information that optimizes our interpretation of the salt diapir itself (e.g., the width of the salt neck) as well as the sediment layers related to the rim synclines. Processing schemes such as prestack depth migration and full-waveform inversion may potentially provide high-resolution images of the salt structures. We only account for diffractions in nonmigrated stacked data to better constrain seismic velocity and improve imaging around the salt diapir. The obtained results are critical for reservoir characterization.


Sign in / Sign up

Export Citation Format

Share Document