Generation of inertia-gravity waves by a time-dependent baroclinic wave in the laboratory

Author(s):  
A.F. Lovegrove ◽  
P.L. Read ◽  
C.J. Richards
2012 ◽  
Vol 69 (1) ◽  
pp. 303-322 ◽  
Author(s):  
Mark D. Fruman ◽  
Ulrich Achatz

Abstract The three-dimensionalization of turbulence in the breaking of nearly vertically propagating inertia–gravity waves is investigated numerically using singular vector analysis applied to the Boussinesq equations linearized about three two-dimensional time-dependent basic states obtained from nonlinear simulations of breaking waves: a statically unstable wave perturbed by its leading transverse normal mode, the same wave perturbed by its leading parallel normal mode, and a statically stable wave perturbed by a leading transverse singular vector. The secondary instabilities grow through interaction with the buoyancy gradient and velocity shear in the basic state. Which growth mechanism predominates depends on the time-dependent structure of the basic state and the wavelength of the secondary perturbation. The singular vectors are compared to integrations of the linear model using random initial conditions, and the leading few singular vectors are found to be representative of the structures that emerge in the randomly initialized integrations. A main result is that the length scales of the leading secondary instabilities are an order of magnitude smaller than the wavelength of the initial wave, suggesting that the essential dynamics of the breaking might be captured by tractable nonlinear three-dimensional simulations in a relatively small triply periodic domain.


2020 ◽  
Vol 77 (3) ◽  
pp. 813-833
Author(s):  
Matthew R. Ambacher ◽  
Michael L. Waite

Abstract Normal modes are used to investigate the contributions of geostrophic vortices and inertia–gravity waves to the energy spectrum of an idealized baroclinic wave simulation. The geostrophic and ageostrophic modal spectra (GE and AE, respectively) are compared to the rotational and divergent kinetic energy (RKE and DKE, respectively), which are often employed as proxies for vortex and wave energy. In our idealized f-plane framework, the horizontal modes are Fourier, and the vertical modes are found by solving an appropriate eigenvalue problem. For low vertical mode number n, both the GE and AE spectra are steep; however, for higher n, while both spectra are shallow, the AE is shallower than the GE and the spectra cross. The AE spectra are peaked at the Rossby deformation wavenumber knR, which increases with n. Analysis of the horizontal mode equations suggests that, for large wavenumbers k≫knR, the GE is approximated by the RKE, while the AE is approximated by the sum of the DKE and potential energy. These approximations are supported by the simulations. The vertically averaged RKE and DKE spectra are compared to the sum of the GE and AE spectra over all vertical modes; the spectral slopes of the GE and AE are close to those of the RKE and DKE, supporting the use of the Helmholtz decomposition to estimate vortices and waves in the midlatitudes. However, the AE is consistently larger than the DKE because of the contribution from the potential energy. Care must be taken when diagnosing the mesoscale transition from the intersection of the vortex and wave spectra; GE and AE will intersect at a different scale than RKE and DKE, despite their similar slopes.


2020 ◽  
Vol 35 (6) ◽  
pp. 355-366
Author(s):  
Vladimir V. Shashkin ◽  
Gordey S. Goyman

AbstractThis paper proposes the combination of matrix exponential method with the semi-Lagrangian approach for the time integration of shallow water equations on the sphere. The second order accuracy of the developed scheme is shown. Exponential semi-Lagrangian scheme in the combination with spatial approximation on the cubed-sphere grid is verified using the standard test problems for shallow water models. The developed scheme is as good as the conventional semi-implicit semi-Lagrangian scheme in accuracy of slowly varying flow component reproduction and significantly better in the reproduction of the fast inertia-gravity waves. The accuracy of inertia-gravity waves reproduction is close to that of the explicit time-integration scheme. The computational efficiency of the proposed exponential semi-Lagrangian scheme is somewhat lower than the efficiency of semi-implicit semi-Lagrangian scheme, but significantly higher than the efficiency of explicit, semi-implicit, and exponential Eulerian schemes.


2010 ◽  
Vol 136 (647) ◽  
pp. 537-548 ◽  
Author(s):  
E. A. Hendricks ◽  
W. H. Schubert ◽  
S. R. Fulton ◽  
B. D. McNoldy

2013 ◽  
Vol 43 (2) ◽  
pp. 382-401 ◽  
Author(s):  
Julien Jouanno ◽  
Frédéric Marin ◽  
Yves du Penhoat ◽  
Jean-Marc Molines

Abstract A regional numerical model of the tropical Atlantic Ocean and observations are analyzed to investigate the intraseasonal fluctuations of the sea surface temperature at the equator in the Gulf of Guinea. Results indicate that the seasonal cooling in this region is significantly shaped by short-duration cooling events caused by wind-forced equatorial waves: mixed Rossby–gravity waves within the 12–20-day period band, inertia–gravity waves with periods below 11 days, and equatorially trapped Kelvin waves with periods between 25 and 40 days. In these different ranges of frequencies, it is shown that the wave-induced horizontal oscillations of the northern front of the mean cold tongue dominate the variations of mixed layer temperature near the equator. But the model mixed layer heat budget also shows that the equatorial waves make a significant contribution to the mixed layer heat budget through modulation of the turbulent cooling, especially above the core of the Equatorial Undercurrent (EUC). The turbulent cooling variability is found to be mainly controlled by the intraseasonal modulation of the vertical shear in the upper ocean. This mechanism is maximum during periods of seasonal cooling, especially in boreal summer, when the surface South Equatorial Current is strongest and between 2°S and the equator, where the presence of the EUC provides a background vertical shear in the upper ocean. It applies for the three types of intraseasonal waves. Inertia–gravity waves also modulate the turbulent heat flux at the equator through vertical displacement of the core of the EUC in response to equatorial divergence and convergence.


Sign in / Sign up

Export Citation Format

Share Document