mixed layer heat budget
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Mareike Körner ◽  
Peter Brandt ◽  
Marcus Dengler

<p>The Angolan shelf system represents a highly productive ecosystem that exhibits pronounced seasonal variability. Productivity peaks in austral winter when seasonally prevailing upwelling favorable winds are weakest. Thus, other processes than local wind-driven upwelling contribute to the near-coastal cooling and nutrient supply during this season. Possible processes that lead to changes of the mixed-layer heat content does not only include local mechanism but also the passage of remotely forced coastally trapped waves. Understanding the driving mechanism of changes in the mixed-layer heat content that may be locally or remotely forced are vital for understanding of upward nutrient supply and biological productivity off Angola. Here, we investigate the seasonal mixed layer heat budget by analyzing atmospheric and oceanic causes for heat content variability. We calculate monthly estimates of surface heat fluxes, horizontal advection from near-surface velocities, horizontal eddy advection, and vertical entrainment. Additionally, diapycnal heat fluxes at the mixed-layer base are determined from shipboard and glider microstructure data. The results are discussed in reference to the variability of the eastern boundary circulation, surface heat fluxes and wind forcing.</p>


2021 ◽  
Author(s):  
Hitesh Gupta ◽  
Sourav Sil

<p>In this study, we model the upper layers of the Bay of Bengal, which is rather a unique water body in terms of its dynamics which is controlled by the advection of large fresh water from the adjoining rivers as well monsoonal precipitation thus changing the turbulent mixing in the upper layers. The fresh water influx from rivers and precipitation, leads to low saline water overlying hypersaline water, creates a strong stratification due to which turbulent mixing is inhibited. The resulting halocline inhibits the wind driven mixing of the upper layers thus changing or affecting the optical characteristics of the water body. With the exception of shortwave insolation, the air – sea heat exchange occurs at the sea surface and is vertically redistributed by mixing and advection. The present study focuses on generating these optical or absorption lengths (e-folding depths) at different locations in the Bay of Bengal as a function of time itself, showing absorption length changes with both the space and the time, using the PWP – 1D model for which data is obtained from RAMA Buoys located along 90<sup>0</sup>E in the Bay of Bengal. The shortwave and longwave absorption length is directly related to heating up of the upper layers of the ocean and thus change its state and dynamics. Heating of the upper oceanic layers are also related to increase in SST as well as the Ocean Heat content of the ocean leading to changes in various systems like monsoon, cyclones, fluxes, etc. These absorption lengths are related to the Mixed layer heat budget directly but it may also be related to the salt budget of the Bay too. The model results highlight that the absorption length affects the SST as well as the temperature of the upper layers and also that the absorption length changes from one season to another season done using the data of - RAMA Buoy located at 90<sup>0</sup>E and 15<sup>0</sup>N (northern Bay of Bengal) and 90<sup>0</sup>E and 12<sup>0</sup>N as well as data from INCOIS tropflux. The study encourages to use the generated results for the Mixed layer heat budget analysis, or for the modelling purpose, etc.</p><p> </p><p><strong>Keywords - </strong>Bay of Bengal, Mixing in the upper layers, Absorption lengths, extinction lengths, Penetration depths, E-folding depth, RAMA buoy, Solar insolation, Water type and quality, Sea surface temperature, PWP – 1D model, Seasonality.</p>


2020 ◽  
Author(s):  
Karen J. Heywood ◽  
Elizabeth Siddle ◽  
Callum Rollo ◽  
Ben Webber ◽  
Rob Hall ◽  
...  

<p>This PICO presentation describes a recent demonstration mission of our wave-propelled autonomous vehicle, an AutoNaut named Caravela. Caravela has been designed and built to carry and deploy a profiling ocean glider at a specified location and time. This has applications for example in transporting an ocean glider to a remote location without use of a research vessel, or initiating a glider campaign at a particular time such as prior to a hurricane or the spring bloom.</p><p> </p><p>In January-February 2020 we participated in the international Eurec4a field campaign in the tropical Atlantic to the east of Barbados. Caravela was deployed from Barbados and carried a Seaglider to release at the study site. The observational campaign was designed to occupy a time series site with three Seagliders (making intensive measurements of upper ocean properties) and the AutoNaut (making continuous measurements of surface meteorology, radiation and surface ocean currents).  Here we describe the technological challenges, the field campaign and the preliminary results of the scientific observations from Caravela and the Seagliders. The aim is to use the observations to calculate the air-sea fluxes and ultimately to close a mixed layer heat budget for the observation site.</p>


2019 ◽  
Vol 11 (19) ◽  
pp. 5429 ◽  
Author(s):  
Liang ◽  
Xing ◽  
Wang ◽  
Zeng

The atmospheric and oceanic causes of mixed layer heat variations in the South China Sea (SCS) are examined using data from six long-lived Array for Real-time Geostrophic Oceanography (Argo) floats. The mixed layer heat budget along each float trajectory is evaluated based on direct measurements, satellite and reanalysis datasets. Our results suggest that the mixed layer heat balance in the SCS has distinct spatial and seasonal variations. The amplitude of all terms in the mixed layer heat budget equation is significantly larger in the northern SCS than in the southern SCS, especially in winter. In the northern SCS, the mixed layer heat budget is controlled by the local surface heat flux and horizontal advection terms in winter, and the net heat flux term in summer. In the western and southeastern SCS, the mixed layer heat budget is dominated by the net surface heat flux in both winter and summer. Further analysis shows that in the SCS, surface shortwave radiation and geostrophic heat advection are major contributors to net heat flux and horizontal advection, respectively. Unlike the net heat flux and horizontal advection, the vertical entrainment is a sink term in general. The rate of mixed layer deepening is the most important factor in the entrainment rate, and a barrier layer may decrease the temperature difference between the bottom of the mixed layer and the water beneath. Residual analysis suggests that the residual term in the equation is due to the inexact calculation of heat geostrophic advection, other missing terms, and unresolved physical ocean dynamic processes.


2017 ◽  
Vol 30 (17) ◽  
pp. 7049-7070 ◽  
Author(s):  
Zhiping Tian ◽  
Tim Li ◽  
Dabang Jiang ◽  
Lin Chen

The causes of the change in amplitude of El Niño–Southern Oscillation (ENSO) during the mid-Holocene were investigated by diagnosing the model simulations that participated in the Paleoclimate Modelling Intercomparison Project phases 2 and 3. Consistent with paleoclimate records, 20 out of the 28 models reproduced weaker-than-preindustrial ENSO amplitude during the mid-Holocene. Two representative models were then selected to explore the underlying mechanisms of air–sea feedback processes. A mixed layer heat budget diagnosis indicated that the weakened ENSO amplitude was primarily attributed to the decrease in the Bjerknes thermocline feedback, while the meridional advective feedback also played a role. During the mid-Holocene, the thermocline response to a unit anomalous zonal wind stress forcing in the equatorial Pacific weakened in both models because of the increased ENSO meridional scale. A further investigation revealed that the greater ENSO meridional width was caused by the strengthening of the Pacific subtropical cell, which was attributed to the enhanced mean trade wind that resulted from the intensified Asian and African monsoon rainfall and associated large-scale east–west circulation in response to the mid-Holocene orbital forcing.


Sign in / Sign up

Export Citation Format

Share Document