Safety, tolerability, pharmacokinetics, and antimalarial efficacy of a novel Plasmodium falciparum ATP4 inhibitor SJ733: a first-in-human and induced blood-stage malaria phase 1a/b trial

2020 ◽  
Vol 20 (8) ◽  
pp. 964-975 ◽  
Author(s):  
Aditya H Gaur ◽  
James S McCarthy ◽  
John C Panetta ◽  
Ronald H Dallas ◽  
John Woodford ◽  
...  
mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Ivan Campeotto ◽  
Francis Galaway ◽  
Shahid Mehmood ◽  
Lea K. Barfod ◽  
Doris Quinkert ◽  
...  

ABSTRACT Plasmodium falciparum RH5 is a secreted parasite ligand that is essential for erythrocyte invasion through direct interaction with the host erythrocyte receptor basigin. RH5 forms a tripartite complex with two other secreted parasite proteins, CyRPA and RIPR, and is tethered to the surface of the parasite through membrane-anchored P113. Antibodies against RH5, CyRPA, and RIPR can inhibit parasite invasion, suggesting that vaccines containing these three components have the potential to prevent blood-stage malaria. To further explore the role of the P113-RH5 interaction, we selected monoclonal antibodies against P113 that were either inhibitory or noninhibitory for RH5 binding. Using a Fab fragment as a crystallization chaperone, we determined the crystal structure of the RH5 binding region of P113 and showed that it is composed of two domains with structural similarities to rhamnose-binding lectins. We identified the RH5 binding site on P113 by using a combination of hydrogen-deuterium exchange mass spectrometry and site-directed mutagenesis. We found that a monoclonal antibody to P113 that bound to this interface and inhibited the RH5-P113 interaction did not inhibit parasite blood-stage growth. These findings provide further structural information on the protein interactions of RH5 and will be helpful in guiding the development of blood-stage malaria vaccines that target RH5. IMPORTANCE Malaria is a deadly infectious disease primarily caused by the parasite Plasmodium falciparum. It remains a major global health problem, and there is no highly effective vaccine. A parasite protein called RH5 is centrally involved in the invasion of host red blood cells, making it—and the other parasite proteins it interacts with—promising vaccine targets. We recently identified a protein called P113 that binds RH5, suggesting that it anchors RH5 to the parasite surface. In this paper, we use structural biology to locate and characterize the RH5 binding region on P113. These findings will be important to guide the development of new antimalarial vaccines to ultimately prevent this disease, which affects some of the poorest people on the planet.


2013 ◽  
Vol 82 (1) ◽  
pp. 152-164 ◽  
Author(s):  
K. Sony Reddy ◽  
Alok K. Pandey ◽  
Hina Singh ◽  
Tajali Sahar ◽  
Amlabu Emmanuel ◽  
...  

ABSTRACTPlasmodium falciparumreticulocyte binding-like homologous protein 5 (PfRH5) is an essential merozoite ligand that binds with its erythrocyte receptor, basigin. PfRH5 is an attractive malaria vaccine candidate, as it is expressed by a wide number ofP. falciparumstrains, cannot be genetically disrupted, and exhibits limited sequence polymorphisms. Viral vector-induced PfRH5 antibodies potently inhibited erythrocyte invasion. However, it has been a challenge to generate full-length recombinant PfRH5 in a bacterial-cell-based expression system. In this study, we have produced full-length recombinant PfRH5 inEscherichia colithat exhibits specific erythrocyte binding similar to that of the native PfRH5 parasite protein and also, importantly, elicits potent invasion-inhibitory antibodies against a number ofP. falciparumstrains. Antibasigin antibodies blocked the erythrocyte binding of both native and recombinant PfRH5, further confirming that they bind with basigin. We have thus successfully produced full-length PfRH5 as a functionally active erythrocyte binding recombinant protein with a conformational integrity that mimics that of the native parasite protein and elicits potent strain-transcending parasite-neutralizing antibodies.P. falciparumhas the capability to develop immune escape mechanisms, and thus, blood-stage malaria vaccines that target multiple antigens or pathways may prove to be highly efficacious. In this regard, antibody combinations targeting PfRH5 and other key merozoite antigens produced potent additive inhibition against multiple worldwideP. falciparumstrains. PfRH5 was immunogenic when immunized with other antigens, eliciting potent invasion-inhibitory antibody responses with no immune interference. Our results strongly support the development of PfRH5 as a component of a combination blood-stage malaria vaccine.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax4489 ◽  
Author(s):  
M. J. Boyle ◽  
J. A. Chan ◽  
I. Handayuni ◽  
L. Reiling ◽  
G. Feng ◽  
...  

Most studies on human immunity to malaria have focused on the roles of immunoglobulin G (IgG), whereas the roles of IgM remain undefined. Analyzing multiple human cohorts to assess the dynamics of malaria-specific IgM during experimentally induced and naturally acquired malaria, we identified IgM activity against blood-stage parasites. We found that merozoite-specific IgM appears rapidly in Plasmodium falciparum infection and is prominent during malaria in children and adults with lifetime exposure, together with IgG. Unexpectedly, IgM persisted for extended periods of time; we found no difference in decay of merozoite-specific IgM over time compared to that of IgG. IgM blocked merozoite invasion of red blood cells in a complement-dependent manner. IgM was also associated with significantly reduced risk of clinical malaria in a longitudinal cohort of children. These findings suggest that merozoite-specific IgM is an important functional and long-lived antibody response targeting blood-stage malaria parasites that contributes to malaria immunity.


2021 ◽  
Vol 80 ◽  
pp. 102240
Author(s):  
Hikaru Nagaoka ◽  
Bernard N. Kanoi ◽  
Masayuki Morita ◽  
Takahiro Nakata ◽  
Nirianne M.Q. Palacpac ◽  
...  

2020 ◽  
pp. 153537022096176
Author(s):  
Emmanuel Amlabu ◽  
Prince B Nyarko ◽  
Grace Opoku ◽  
Damata Ibrahim-Dey ◽  
Philip Ilani ◽  
...  

Nearly 60% of Plasmodium falciparum proteins are still uncharacterized and their functions are unknown. In this report, we carried out the functional characterization of a 45 kDa protein (PF3D7_1459400) and showed its potential as a target for blood stage malaria vaccine development. Analysis of protein subcellular localization, native protein expression profile, and erythrocyte invasion inhibition of both clinical and laboratory parasite strains by peptide antibodies suggest a functional role of PF3D7_1459400 protein during erythrocyte invasion. Also, immunoreactivity screens using synthetic peptides of the protein showed that adults resident in malaria endemic regions in Ghana have naturally acquired plasma antibodies against PF3D7_1459400 protein. Altogether, this study presents PF3D7_1459400 protein as a potential target for the development of peptide-based vaccine for blood-stage malaria. Impact statement Plasmodium falciparum malaria is a global health problem. Erythrocyte invasion by P. falciparum merozoites appears to be a promising target to curb malaria. We have identified and characterized a novel protein that is involved in erythrocyte invasion. Our data on protein subcellular localization, stage-specific protein expression pattern, and merozoite invasion inhibition by α-peptide antibodies suggest a role for PF3D7_1459400 protein during P. falciparum erythrocyte invasion. Even more, the human immunoepidemiology data present PF3D7_1459400 protein as an immunogenic antigen which could be further exploited for the development of new anti-infective therapy against malaria.


2012 ◽  
Vol 81 (2) ◽  
pp. 441-451 ◽  
Author(s):  
Alok K. Pandey ◽  
K. Sony Reddy ◽  
Tajali Sahar ◽  
Sonal Gupta ◽  
Hina Singh ◽  
...  

ABSTRACTBlood-stage malaria vaccines that target singlePlasmodium falciparumantigens involved in erythrocyte invasion have not induced optimal protection in field trials. Blood-stage malaria vaccine development has faced two major hurdles, antigenic polymorphisms and molecular redundancy, which have led to an inability to demonstrate potent, strain-transcending, invasion-inhibitory antibodies. Vaccines that target multiple invasion-related parasite proteins may inhibit erythrocyte invasion more efficiently. Our approach is to develop a receptor-blocking blood-stage vaccine againstP. falciparumthat targets the erythrocyte binding domains of multiple parasite adhesins, blocking their interaction with their receptors and thus inhibiting erythrocyte invasion. However, with numerous invasion ligands, the challenge is to identify combinations that elicit potent strain-transcending invasion inhibition. We evaluated the invasion-inhibitory activities of 20 different triple combinations of antibodies mixedin vitroagainst a diverse set of six key merozoite ligands, including the novel ligandsP. falciparumapical asparagine-rich protein (PfAARP), EBA-175 (PfF2),P. falciparumreticulocyte binding-like homologous protein 1 (PfRH1), PfRH2, PfRH4, andPlasmodiumthrombospondin apical merozoite protein (PTRAMP), which are localized in different apical organelles and are translocated to the merozoite surface at different time points during invasion. They bind erythrocytes with different specificities and are thus involved in distinct invasion pathways. The antibody combination of EBA-175 (PfF2), PfRH2, and PfAARP produced the most efficacious strain-transcending inhibition of erythrocyte invasion against diverseP. falciparumclones. This potent antigen combination was selected for coimmunization as a mixture that induced balanced antibody responses against each antigen and inhibited erythrocyte invasion efficiently. We have thus demonstrated a novel two-step screening approach to identify a potent antigen combination that elicits strong strain-transcending invasion inhibition, supporting its development as a receptor-blocking malaria vaccine.


2021 ◽  
Author(s):  
Stephen Derek Woolley ◽  
Melissa Fernandez ◽  
Maria Rebelo ◽  
Stacey Llewellyn ◽  
Louise Marquart ◽  
...  

Abstract Background New anti-malarial therapeutics are required to counter the threat of increasing drug resistance. Malaria volunteer infection studies (VIS), particularly the induced blood stage malaria (IBSM) model, play a key role in accelerating anti-malarial drug development. Supply of the reference 3D7-V2 Plasmodium falciparum malaria cell bank (MCB) is limited. This study aimed to develop a new MCB, and compare the safety and infectivity of this MCB with the existing 3D7-V2 MCB, in a VIS. A second bank (3D7-V1) developed in 1995 was also evaluated.Methods The 3D7-V2 MCB was expanded in vitro using a bioreactor to produce a new MCB designated 3D7-MBE-008. This bank and 3D7-V1 were then evaluated using the IBSM model, where healthy participants were intravenously inoculated with blood-stage parasites. Participants were treated with artemether-lumefantrine when parasitaemia or clinical thresholds were reached. Safety, infectivity and parasite growth and clearance were evaluated. Results The in vitro expansion of 3D7-V2 produced 200 vials of the 3D7-MBE-008 MCB, with a parasitaemia of 4.3%. This compares to 0.1% in the existing 3D7-V2 MCB, and <0.01% in the 3D7-V1 MCB. All four participants (two per MCB) developed detectable P. falciparum infection after inoculation with approximately 2800 parasites. For the 3D7-MBE-008 MCB, the parasite multiplication rate of 48 hours (PMR48) using non-linear mixed effects modelling was 34.6 (95% CI: 18.5 – 64.6), similar to the parental 3D7-V2 line; parasitaemia in both participants exceeded 10,000/mL by day 8. Growth of the 3D7-V1 was slower (PMR48 of 11.5 [95% CI: 8.5 – 15.6]), with parasitaemia exceeding 10,000 parasites/mL on days 10 and 8.5. Rapid parasite clearance followed artemether-lumefantrine treatment in all four participants, with clearance half-lives of 4.01 and 4.06 (weighted mean 4.04 [95% CI: 3.61 – 4.57]) hours for 3D7-MBE-008 and 4.11 and 4.52 (weighted mean 4.31 [95% CI: 4.16 – 4.47]) hours for 3D7-V1. A total of 59 adverse events occurred; most were of mild severity with three being severe in the 3D7-MBE-008 study. Conclusion The safety, growth and clearance profiles of the expanded 3D7-MBE-008 MCB closely resemble that of its parent, indicating its suitability for future studies. Trial Registration Australian New Zealand Clinical Trials registry numbers:P3487 (3D7-V1): ACTRN12619001085167P3491 (3D7-MBE-008): ACTRN12619001079134


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1676-1676
Author(s):  
Samuel Kirimunda ◽  
Tobias Kinyera ◽  
Martin Ogwang ◽  
Steven J Reynolds ◽  
Moses Joloba ◽  
...  

Abstract Introduction: Infection with Plasmodium falciparum (Pf) malaria is widely accepted as a risk factor for endemic Burkitt lymphoma (eBL), but whether children with eBL are more likely to have detectable blood-stage Pfmalaria parasites and/or report a history of malaria morbidity compared to location-matched control children without eBL is unknown. We investigated this hypothesis in children with eBL (cases) compared to location-matched children without eBL (controls) from the National Cancer Institute (NCI)-sponsored EMBLEM Study. Methods: Cases were children with eBL aged 0-15 years presenting to two hospitals in northern Uganda from 11/2010 to 07/2014 with histologically proven, untreated eBL. Controls were children with similar malaria exposure in the region, including children attending village health centers for minor complaints (pilot health-center controls [PHCs]), at home in 12 randomly selected villages (pilot population controls [PPCs]),and at home in 88 randomly selected villages with matching for the age- and sex-distribution of eBL cases (matched population controls [MPCs]). Cases and controls provided a venous blood sample and questionnaire information on exposure to Pf malaria parasites (mosquito bed net use, insecticide sprays, proximity to a river/swamp, history of treatment for malaria). Blood-stage malaria was evaluated microscopically with giemsa-stained thin and thick blood films and with a commercially available histidine-rich protein (HRPII) antigen-based rapid diagnostic test. The log of thick-film malaria parasite count in cases and controls was compared using the Students t-test. Associations were evaluated by calculating odds ratios (ORs) and 95% confidence intervals (95% CIs) using unconditional logistic regression adjusting for sex, age, ownership/ use of mosquito bed net, and in- or out-patient treatment for malaria. Results:We studied 280 eBL cases (61% male, mean + SD age 7.9 + 3.4 years) and 1619 controls including 171 PHCs (37% male, mean + SD age 7.3 + 4.0 years), 1005 PPCs (48% male, mean + SD age 7.0 + 4.1 years) and 443 MPCs (56% male, mean + SD age 7.5 + 3.3 years). Overall, eBL cases were less likely to own a mosquito bed net than controls (46% versus 67% - 79% in controls, p<0.0001), but among those who owned a mosquito bed net, eBL cases were more likely to have used it the previous night (42% versus 21% - 31% in controls, p<0.0001). Blood-stage malaria infection was detected less frequently in cases compared to controls (Figure 1). In adjusted results, eBL cases were less likely to have current blood-stage malaria infection based on the thin film (OR 0.42 [95% CI 0.26-0.67], p<0.0001) or thick film (OR 0.55 [95% CI 0.38-0.80], p=0.001) and less likely to have had recent infection based on the HRPII rapid diagnostic test (OR 0.31 [95% CI 0.22-0.44], p<0.0001) using all controls combined, with similar results using separate control groups (OR 0.28 – 0.60). Blood-stage malaria parasite count was 0.88 log lower in parasitemic eBL cases than controls (2.24 log versus 3.12 log, p=0.0003). With all controls combined and adjusting for HRPII antigen, the risk of eBL was inversely associated with female sex (OR 0.65 [95% CI 0.46-0.90], p=0.011), ownership of mosquito bed net (OR 0.03 [95% CI 0.01-0.07], p<0.0001), and any inpatient admission for severe malaria (OR 0.56 [95% CI 0.39-0.80], p=0.001) or outpatient treatment for moderate malaria (OR 0.47 [95% CI 0.32-0.69], p<0.0001). The risk of eBL was directly associated with older age (OR 3.1 [95% CI 1.9-5.00] and OR 2.6 [95% CI 1.60-4.40], for 5-9 and 10-15 years versus 0-4 years) and not sleeping under a mosquito net the previous night (OR 10.9 [95% CI 4.34-27.3], p<0.0001). Socioeconomics, spraying insecticides, and proximity to river/swamp did not influence the results. Conclusions: Cases of eBL were unlikely to have Pf malaria parasitemia despite high exposure to mosquitoes and low ownership of bed nets. These results reject the hypothesis that eBL is associated with current or recent blood-stage Pf malaria. They support an alternative hypothesis that children with eBL have superior immunological control of blood-stage infection (Pf elite controller phenotype) and that eBL might be an accident of robust immunological control of blood-stage malaria infection. Further studies are needed to characterize the molecular spectrum of Pf parasites and other mechanisms that drive eBL genesis. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document