cell bank
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 59)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 27 (5) ◽  
pp. 1152-1158
Author(s):  
Seo-Jin Yang ◽  
Kyung-Min Kim ◽  
Ji-Won Song ◽  
Seung-Hun Lee

In this study, we developed Dermabiotics HDB1102 using Lactobacillus gasseri HDB1102 to relieve skin irritation caused by particulate matter (PM). L. gasseri HDB1102 was provided from cell bank and identified by 16S ribosomal RNA gene sequencing. Dermabiotics HDB1102 was manufactured by heating, centrifuging, and filtering culture medium of L. gasseri HDB1102. When 0-2.5%(v/v) Dermabiotics HDB1102 was treated, cytotoxicity on normal human epidermal keratinocytes (NHEKs) and human fibroblast was not observed by using MTT assay. The mRNA expression levels of cytochrome P450 1A1 (CYP1A1), interleukin (IL)-1β, and IL-8 on Dermabiotics HDB1102 treated cells decreased compared to PM-treated cells. Conversely, the mRNA expressions of aquaporin-3 (AQP-3), CD-44, and collagen type 1 (COL-1) on Dermabiotics HDB1102 treated cells were dose-dependent higher than those of non-treated cells. These results indicated that Dermabiotics HDB1102 have anti-inflammatory, moisturizing, and anti-wrinkle effects and could be used as a potential cosmetic ingredient to alleviate skin symptoms caused by PM.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fan Li ◽  
Zhenyu Zhao ◽  
Zongbiao Zhang ◽  
Yan Zhang ◽  
Wei Guan

Abstract Background Tumor cells exhibit enhanced metabolism of nutrients to satisfy the demand of sustained proliferation in vivo. Seminal reports have presented evidence that tryptophan (Trp) metabolic reprogramming induced by aberrant indoleamine 2,3-dioxygenases could promote tumor development in several cancer types. However, the underlying mechanism of Trp metabolism associated tumor progression is not fully understood. Materials and methods Prostatic cell lines LNCaP and VCaP were purchased from the Cell Bank of the Chinese Academy of Sciences (China). Human prostatic tumor tissue samples were obtained from the Tongji Hospital. Female NOD-SCID mice (6 ~ 8 weeks) were purchased from Huafukang Co. (China) and raised in SPF room. Commercial kits and instruments were used for cell apoptosis analysis, real-time PCR, western blotting, ELISA analysis and other experiments. Result Comparing the tumor tissues from prostatic cancer patients, we found elevated expression of tryptophan 2, 3-dioxygenase 2 (TDO2), and elevated Trp metabolism in chemo-resistant tumor tissues. In vitro, overexpression of TDO2 significantly promoted the Trp metabolism in prostatic cancer cell lines LNCaP and VCap, resulting in the multidrug resistance development. Mechanistically, we demonstrated that Trp metabolite kynurenine (Kyn) promoted the upregulation and nuclear translocation of transcription factor aryl hydrocarbon receptor (AhR). Subsequently, AhR collaborated with NF-κB to facilitate the activation of c-Myc. In turn, c-Myc promoted the up-regulation of ATP-binding cassette (ABC) transporters and Trp transporters, thereby contributing to chemoresistance and strengthened Trp metabolism in prostatic cancer. Interrupt of Trp/TDO2/Kyn/AhR/c-Myc loop with c-Myc inhibitor Mycro-3 efficiently suppressed the chemoresistance and improved the outcome of chemotherapy, which described a new strategy in clinical prostatic cancer treatment. Conclusion Our study demonstrates that elevated TOD2 expression promoted Trp metabolism and metabolite Kyn production, thus resulting in the activation of AhR/c-Myc/ABC-SLC transporters signaling pathway. Interrupt of Trp metabolism/c-Myc loop efficiently suppressed the drugs resistance induced by TDO2, which represented potential target to improve the outcome in drug-resistant prostatic cancer treatment.


2021 ◽  
Author(s):  
Lei Tong ◽  
Adam Corrigan ◽  
Navin Rathna Kumar ◽  
Kerry Hallbrook ◽  
Jonathon Orme ◽  
...  

Abstract Cell line authentication is important in the biomedical field to ensure that researchers are not working with misidentified cells. Short tandem repeat is the gold standard method, but has its own limitations, including being expensive and time-consuming. Deep neural networks achieve great success in the analysis of cellular images in a cost-effective way. However, because of the lack of centralized available datasets, whether or not cell line authentication can be replaced or supported by cell image classification is still a question. Moreover, the relationship between the incubation times and cellular images has not been explored in previous studies. In this study, we automated the process of the cell line authentication by using deep learning analysis of brightfield cell line images. We proposed a novel multi-task framework to identify cell lines from cell images and predict the duration of how long cell lines have been incubated simultaneously. Using thirty cell lines’ data from the AstraZeneca Cell Bank, we demonstrated that our proposed method can accurately identify cell lines from brightfield images with a 99.8% accuracy and predicts the incubation durations for cell images with the coefficient of determination score of 0.927. Considering that new cell lines are continually added to the AstraZeneca Cell Bank, we integrated the transfer learning technique with the proposed system to deal with data from new cell lines not included in the pre-trained model. Our method achieved excellent performance with a sensitivity of 97.7% and specificity of 95.8% in the detection of 14 new cell lines. These results demonstrated that our proposed framework can effectively identify cell lines using brightfield images.


2021 ◽  
Author(s):  
Guanghua Benson Li ◽  
Jennifer Pollard ◽  
Ren Liu ◽  
Richard C. Stevens ◽  
Jorge Quiroz ◽  
...  

Author(s):  
Rita Agostinetto ◽  
Jessica Dawson ◽  
Angela Lim ◽  
Mirva Hejjaoui-simoneau ◽  
Cyril Boucher ◽  
...  

Therapeutic proteins, including monoclonal antibodies, are typically manufactured using clonally-derived, stable host cell lines, since consistent and predictable cell culture performance is highly desirable. However, selecting and preparing banks of stable clones takes considerable time, which inevitably extends overall development timelines for new therapeutics by delaying the start of subsequent activities, such as the scale-up of manufacturing processes. In the context of the COVID-19 pandemic, with its intense pressure for accelerated development strategies, we used a novel transposon-based Leap-In Transposase® system to rapidly generate high-titer stable pools and then used them directly for large scale-manufacturing of an anti-SARS-CoV2 monoclonal antibody under cGMP. We performed the safety testing of our non-clonal cell bank, then used it to produce material at a 200L-scale for pre-clinical safety studies and formulation development work, and thereafter at 2000L scale for supply of material for a Phase 1 clinical trial. Testing demonstrated the comparability of critical product qualities between the two scales and, more importantly, that our final clinical trial product met all pre-set product quality specifications. The above expediated approach provided clinically-ready material within 4.5 months, in comparison to 12-14 months for production of clinical trial material via the conventional approach.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4620
Author(s):  
Christel Larbouret ◽  
Laurent Gros ◽  
André Pèlegrin ◽  
Thierry Chardès

Monoclonal antibodies have revolutionized the treatment of many diseases, but their clinical efficacy remains limited in some other cases. Pre-clinical and clinical trials have shown that combinations of antibodies that bind to the same target (homo-combinations) or to different targets (hetero-combinations) to mimic the polyclonal humoral immune response improve their therapeutic effects in cancer. The approval of the trastuzumab/pertuzumab combination for breast cancer and then of the ipilimumab/nivolumab combination for melanoma opened the way to novel antibody combinations or oligoclonal antibody mixtures as more effective biologics for cancer management. We found more than 300 phase II/III clinical trials on antibody combinations, with/without chemotherapy, radiotherapy, small molecules or vaccines, in the ClinicalTrials.gov database. Such combinations enhance the biological responses and bypass the resistance mechanisms observed with antibody monotherapy. Usually, such antibody combinations are administered sequentially as separate formulations. Combined formulations have also been developed in which separately produced antibodies are mixed before administration or are produced simultaneously in a single cell line or a single batch of different cell lines as a polyclonal master cell bank. The regulation, toxicity and injection sequence of these oligoclonal antibody mixtures still need to be addressed in order to optimize their delivery and their therapeutic effects.


2021 ◽  
pp. 579-592
Author(s):  
Anne B. Tolstrup ◽  
Steven I. Max ◽  
Denis Drapeau ◽  
Timothy S. Charlebois

2021 ◽  
Author(s):  
Fan Li ◽  
ZHENYU Zhao ◽  
ZONGBIAO Zhang ◽  
YAN ZHANG ◽  
WEI GUAN

Abstract Background: Tumor cells exhibit enhanced metabolism of nutrients to satisfy the demand of sustained proliferation in vivo. Seminal reports have presented evidence that tryptophan (Trp) metabolic reprogramming induced by aberrant indoleamine 2,3-dioxygenases could promote tumor development in several cancer types. However, the underlying mechanism of Trp metabolism associated tumor progression is not fully understood.Materials and methods: Prostatic cell lines LNCaP and VCaP were purchased from the Cell Bank of the Chinese Academy of Sciences (China). Human prostatic tumor tissue samples were obtained from the Tongji Hospital. Female NOD-SCID mice (6~8 weeks) were purchased from Huafukang Co. (China) and raised in SPF room. Commercial kits and instruments were used for cell apoptosis analysis, real-time PCR, western blotting, ELISA analysis and other experiments.Result: Comparing the tumor tissues from prostatic cancer patients, we found elevated expression of tryptophan 2,3-dioxygenase 2 (TDO2), and elevated Trp metabolism in chemo-resistant tumor tissues. In vitro, overexpression of TDO2 significantly promoted the Trp metabolism in prostatic cancer cell lines LNCaP and VCap, resulting in the multidrug resistance development. Mechanistically, we demonstrated that Trp metabolite kynurenine (Kyn) promoted the upregulation and nuclear translocation of transcription factor aryl hydrocarbon receptor (AhR). Subsequently, AhR collaborated with NF-κB to facilitate the activation of c-Myc. In turn, c-Myc promoted the up-regulation of ATP-binding cassette (ABC) transporters and Trp transporters, thereby contributing to chemoresistance and strengthened Trp metabolism in prostatic cancer. Interrupt of Trp/TDO2/Kyn/AhR/c-Myc loop with c-Myc inhibitor Mycro-3 efficiently suppressed the chemoresistance and improved the outcome of chemotherapy, which described a new strategy in clinical prostatic cancer treatment. Conclusion:Our study demonstrates that elevated TOD2 expression promoted Trp metabolism and metabolite Kyn production, thus resulting in the activation of AhR/c-Myc/ABC-SLC transporters signaling pathway. Interrupt of Trp metabolism/c-Myc loop efficiently suppressed the drugs resistance induced by TDO2, which represented potential target to improve the outcome in drug-resistant prostatic cancer treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Weizhu Zhao ◽  
Kai Liu ◽  
Zhikun Sun ◽  
Longgang Wang ◽  
Bing Liu ◽  
...  

BackgroundGastric cancer (GC) is one of the most common causes of malignant tumors in the world. Due to the high heterogeneity of GC and lack of specificity of available chemotherapy regimens, these tumors are prone to resistance, recurrence, and metastasis. Here, we formulated an individualized chemotherapy regimen for GC using a modified individual conditional reprogramming (i-CR) system. We established a primary tumor cell bank of GC cells and completed drug screening in order to realize individualized and accurate GC treatment.MethodsWe collected specimens from 93 surgical or gastroscopy GC cases and established a primary tumor cell bank using the i-CR system and PDX models. We also completed in vitro culture and drug sensitivity screening of the GC cells using the i-CR system. Whole-exome sequencing (WES) of the i-CR cells was performed using P0 and P5. We then chose targeted chemotherapy drugs based on the i-CR system results.ResultsOf the 72 cases that were collected from surgical specimens, 26 cases were successfully cultured with i-CR system, and of the 21 cases collected from gastroscopy specimens, seven were successfully cultured. Among these, 20 cases of the PDX model were established. SRC ± G3 had the highest culture success rate. The i-CR cells of P0 and P5 appeared to be highly conserved. According to drug sensitivity screening, we examined the predictive value of responses of GC patients to chemotherapeutic agents, especially in neoadjuvant patients.ConclusionThe i-CR system does not only represent the growth characteristics of tumors in vivo, but also provides support for clinical drug use. Drug susceptibility results were relatively consistent with clinical efficacy.


Author(s):  
Jorge A. Soto ◽  
Nicolás M. S. Gálvez ◽  
Gaspar A. Pacheco ◽  
Gisela Canedo-Marroquín ◽  
Susan M. Bueno ◽  
...  

Human metapneumovirus (hMPV) is an emergent virus, which mainly infects the upper and lower respiratory tract epithelium. This pathogen is responsible for a significant portion of hospitalizations due to bronchitis and pneumonia in infants and the elderly worldwide. hMPV infection induces a pro-inflammatory immune response upon infection of the host, which is not adequate for the clearance of this pathogen. The lack of knowledge regarding the different molecular mechanisms of infection of this virus has delayed the licensing of effective treatments or vaccines. As part of this work, we evaluated whether a single and low dose of a recombinant Mycobacterium bovis Bacillus Calmette-Guérin (BCG) expressing the phosphoprotein of hMPV (rBCG-P) can induce a protective immune response in mice. Immunization with the rBCG-P significantly decreased neutrophil counts and viral loads in the lungs of infected mice at different time points. This immune response was also associated with a modulated infiltration of innate cells into the lungs, such as interstitial macrophages (IM) and alveolar macrophages (AM), activated CD4+ and CD8+ T cells, and changes in the population of differentiated subsets of B cells, such as marginal zone B cells and plasma cells. The humoral immune response induced by the rBCG-P led to an early and robust IgA response and a late and constant IgG response. Finally, we determined that the transfer of cells or sera from immunized and infected mice to naïve mice promoted an efficient viral clearance. Therefore, a single and low dose of rBCG-P can protect mice from the disease caused by hMPV, and this vaccine could be a promising candidate for future clinical trials.


Sign in / Sign up

Export Citation Format

Share Document