Study of Relative Position and Attitude Estimation and Control Scheme for the Final Phase of an Autonomous Docking Mission

1998 ◽  
Vol 31 (21) ◽  
pp. 185-193 ◽  
Author(s):  
N.K. Philip ◽  
M.R. Ananthasayanam ◽  
S. Dasgupta
2018 ◽  
Vol 78 (10) ◽  
pp. 2027-2035 ◽  
Author(s):  
M. Sbarciog ◽  
G. Giovannini ◽  
R. Chamy ◽  
A. Vande Wouwer

Abstract The anaerobic digestion (AD) technology is widely used in the treatment of waste and wastewater. To ensure the treatment efficiency and to increase the production of biogas, which can be reused as a renewable energy source, a good understanding of the process and tight control are needed. This paper presents an estimation and control scheme, which can be successfully used in the operation of the AD process. The process is simulated by the ADM1 model, the most complex and detailed model developed so far to characterize AD. The controller and the observer, which provides estimates of the unmeasurable variables needed in the computation of the control law, are designed based on a simplified model developed in a previous work. Since it has been shown that hydrogen concentration is an accurate and fast indicator of process stability, it was chosen as controlled variable. Aside from the hydrogen concentration, the only measurement employed by the proposed control structure is the volatile fatty acids concentration. Simulation results prove the effectiveness of the proposed control structure.


Author(s):  
Ronan Arraes Jardim Chagas ◽  
Jacques Waldmann

A Rao-Blackwellized particle filter has been designed and its performance investigated in a simulated three-axis satellite testbed used for evaluating on-board attitude estimation and control algorithms. Vector measurements have been used to estimate attitude and angular rate and, additionally, a pseudo-measurement based on a low-pass filtered time-derivative of the vector measurements has been proposed to improve the filter performance. Conventional extended and unscented Kalman filters, and standard particle filtering have been compared with the proposed approach to gauge its performance regarding attitude and angular rate estimation accuracy, computational workload, convergence rate under uncertain initial conditions, and sensitivity to disturbances. Though a myriad of filters have been proposed in the past to tackle the problem of spacecraft attitude and angular rate estimation with vector observations, to the best knowledge of the authors the present Rao-Blackwellized particle filter is a novel approach that significantly reduces the computational load, provides an attractive convergence rate, and successfully preserves the performance of the standard particle filter when subjected to disturbances.


Sign in / Sign up

Export Citation Format

Share Document