Identification of Heat Transfer Parameters in Fixed-Beds

1985 ◽  
Vol 18 (5) ◽  
pp. 207-211
Author(s):  
C. McGreavy ◽  
A. Guidoum
1983 ◽  
Vol 45 (5) ◽  
pp. 1298-1300 ◽  
Author(s):  
Yu. M. Matsevityi ◽  
A. V. Multanovskii

Clay Minerals ◽  
2018 ◽  
Vol 53 (2) ◽  
pp. 255-269 ◽  
Author(s):  
Vasily Moraru

ABSTRACTIn an automated installation powered by direct current (DC), the boiling curves and heat-transfer-coefficient (HTC) dependencies on the superheat values (ΔT) under free convection conditions for the water nanodispersions of clay minerals – illite, montmorillonite, palygorskite and genetic mixtures of the latter two – were obtained. The effects of some factors on pool boiling heat transfer were also studied.A significant influence of the shape and anisotropy of nanoparticles (NPs) on the heat-transfer parameters of nanofluids (NFs) was detected. A significant critical heat flux (CHF) enhancement (up to 200–300%) at boiling of the nanofluids studied was established, which is due to nanoparticle deposition on the heater surface during nanofluid boiling. The structure of the nanomaterials deposited is important in the enhancement of heat transfer at boiling of nanofluids and in avoiding boiling crises.The present study showed the effectiveness of clay-mineral nanofluids for extra emergency cooling of overheated surfaces of powerful equipment in the event of the sudden onset of a boiling crisis.


Author(s):  
Elizabeth B. Nadworny ◽  
T. Gary Yip ◽  
Nader Farag

Abstract This experimental study focuses on the enhancement of the heat removal process by modifying the geometry of pin fin heat sinks, while maintaining the same effective heat transfer area. The pins are cut at an angle to reduce the blockage of air flow across the surface. To perform this study, a small scale wind tunnel facility has been designed specifically for testing high power dissipation processors and other ULSI components. The facility is fully automated and controlled by an HP3852A Data Acquisition System interfaced with a 486 based PC computer. The average surface temperature, Reynolds number, Nusselt number and other relevant heat transfer parameters were reduced from the data collected. Results from the study show that a heat sink with an angled trailing edge produces the greatest enhancement of heat removal. The mechanism for the improved heat transfer is the larger temperature gradient across the surface, which is obtained by lowering the minimum temperature on the surface.


2019 ◽  
Vol 128 ◽  
pp. 01003 ◽  
Author(s):  
Jaroslaw Krzywanski ◽  
Karolina Grabowska ◽  
Marcin Sosnowski ◽  
Anna Zylka ◽  
Anna Kulakowska ◽  
...  

An innovative idea, shown in the paper constitutes in the use of the fluidized bed of sorbent, instead of the conventional, fixed-bed, commonly used in the adsorption chillers. Bed–to–wall heat transfer coefficients for fixed and fluidized beds of adsorbent are determined. Sorbent particles diameters and velocities of fluidizing gas are discussed in the study. The calculations confirmed, that the bed–to–wall heat transfer coefficient in the fluidized bed of adsorbent is muchhigher than that in a conventional bed.


Sign in / Sign up

Export Citation Format

Share Document