scholarly journals 811. Optimizing Dendritic Cell Vaccination by Combination with Oncolytic Adenovirus Coexpressing Interleukin-12 and Granulocyte-Macrophage Colony Stimulating Factor

2010 ◽  
Vol 18 ◽  
pp. S313-S314
Blood ◽  
2002 ◽  
Vol 99 (6) ◽  
pp. 2122-2130 ◽  
Author(s):  
Meredith O'Keeffe ◽  
Hubertus Hochrein ◽  
David Vremec ◽  
Joanne Pooley ◽  
Robert Evans ◽  
...  

Abstract We studied the effects of administration of several cytokines, including progenipoietin-1 (ProGP-1), Flt-3 ligand (FL), granulocyte colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor in a pegylated form (pGM-CSF), on dendritic cell (DC) populations in mouse spleen. ProGP-1 produced the most striking increase in overall DC numbers, apparently more than its constituent FL and G-CSF components. However, the expansion in DC numbers was strongly subpopulation selective, with ProGP-1 and FL producing selective expansion of CD8+ DCs, whereas pGM-CSF produced selective expansion of CD8− DCs. Surprising differences were observed between the effects of murine and human recombinant FL preparations on murine DCs. Many of the biologic functions of the DC subpopulations expanded by cytokines remained intact, including the capacity of the ProGP-1– and FL-expanded CD8+ DCs to produce the T-helper-1–biasing cytokine interleukin 12 (IL-12). However, the expanded DCs from all but G-CSF–treated mice were deficient in the ability to make interferon γ, and the CD8+ DCs produced with pGM-CSF treatment had an abrogated capacity to form bioactive IL-12. Such selective expansion of DC populations and alterations in their cytokine-secretion capacity have implications for clinical use of the studied cytokines in immune modulation.


1999 ◽  
Vol 67 (4) ◽  
pp. 1606-1613 ◽  
Author(s):  
Dongji Zhang ◽  
Xi Yang ◽  
Hang Lu ◽  
Guangming Zhong ◽  
Robert C. Brunham

ABSTRACT As is true for other intracellular pathogens, immunization with live Chlamydia trachomatis generally induces stronger protective immunity than does immunization with inactivated organism. To investigate the basis for such a difference, we studied immune responses in BALB/c mice immunized with viable or UV-killed C. trachomatis mouse pneumonitis (MoPn). Strong, acquired resistance to C. trachomatis infection was elicited by immunization with viable but not dead organisms. Immunization with viable organisms induced high levels of antigen-specific delayed-type hypersensitivity (DTH), gamma interferon production, and immunoglobulin A (IgA) responses. Immunization with inactivated MoPn mainly induced interleukin-10 (IL-10) production and IgG1 antibody without IgA or DTH responses. Analysis of local early cytokine and cellular events at days 3, 5, and 7 after peritoneal cavity immunization showed that high levels of granulocyte-macrophage colony-stimulating factor and IL-12 were detected with viable but not inactivated organisms. Furthermore, enrichment of a dendritic cell (DC)-like population was detected in the peritoneal cavity only among mice immunized with viable organisms. The results suggest that early differences in inducing proinflammatory cytokines and activation and differentiation of DCs may be the key mechanism underlying the difference between viable and inactivated organisms in inducing active immunity to C. trachomatisinfection.


Sign in / Sign up

Export Citation Format

Share Document