We-P14:392 Conjugated linoleic acids increase non-oxidative oxygenation of arachidonic acid in monocytes via PPAR alpha receptor activation

2006 ◽  
Vol 7 (3) ◽  
pp. 433
Author(s):  
D. Chlubek ◽  
E. Stachowska
1997 ◽  
Vol 272 (1) ◽  
pp. H350-H359 ◽  
Author(s):  
D. S. Damron ◽  
B. A. Summers

Modulation of intracellular free Ca2+ concentration ([Ca2+]i) by inotropic stimuli alters contractility in cardiac muscle. Arachidonic acid (AA), a precursor for eicosanoid formation, is released in response to receptor activation and myocardial ischemia and has been demonstrated to alter K+ and Ca2+ channel activity. We investigated the effects of AA on contractility by simultaneously measuring [Ca2+]i and shortening in single field-stimulated rat ventricular myocytes. [Ca2+]i transients were measured using fura 2, and myocyte shortening was assessed using video edge detection. AA stimulated a doubling in the amplitude of the [Ca2+]i transient and a twofold increase in myocyte shortening. In addition, AA stimulated a 30% increase in the time to 50% diastolic [Ca2+]i and a 35% increase in the time to 50% relengthening. These effects of AA were mediated by AA itself (56 +/- 5%) and by cyclooxygenase metabolites. Pretreatment with the protein kinase C inhibitors staurosporine and chelerythrine nearly abolished (> 90% inhibition) these AA-induced effects. Inhibition of voltagegated K+ channels with 4-aminopyridine mimicked the effects of AA. Addition of AA to the 4-aminopyridine-treated myocyte had no additional effect on parameters of contractile function. These data indicate that AA alters the amplitude and duration of Ca2- transients and myocyte shortening via protein kinase C-dependent inhibition of voltage-gated K+ channels. Release of AA by phospholipases in response to receptor activation by endogenous mediators or pathological stimuli may be involved in mediating inotropic responses in cardiac muscle.


2009 ◽  
Vol 134 (5) ◽  
pp. 385-396 ◽  
Author(s):  
Tora Mitra-Ganguli ◽  
Iuliia Vitko ◽  
Edward Perez-Reyes ◽  
Ann R. Rittenhouse

The Gq-coupled tachykinin receptor (neurokinin-1 receptor [NK-1R]) modulates N-type Ca2+ channel (CaV2.2 or N channel) activity at two distinct sites by a pathway involving a lipid metabolite, most likely arachidonic acid (AA). In another study published in this issue (Heneghan et al. 2009. J. Gen Physiol. doi:10.1085/jgp.200910203), we found that the form of modulation observed depends on which CaVβ is coexpressed with CaV2.2. When palmitoylated CaVβ2a is coexpressed, activation of NK-1Rs by substance P (SP) enhances N current. In contrast, when CaVβ3 is coexpressed, SP inhibits N current. However, exogenously applied palmitic acid minimizes this inhibition. These findings suggested that the palmitoyl groups of CaVβ2a may occupy an inhibitory site on CaV2.2 or prevent AA from interacting with that site, thereby minimizing inhibition. If so, changing the orientation of CaVβ2a relative to CaV2.2 may displace the palmitoyl groups and prevent them from antagonizing AA's actions, thereby allowing inhibition even in the presence of CaVβ2a. In this study, we tested this hypothesis by deleting one (Bdel1) or two (Bdel2) amino acids proximal to the α interacting domain (AID) of CaV2.2's I–II linker. CaVβs bind tightly to the AID, whereas the rigid region proximal to the AID is thought to couple CaVβ's movements to CaV2.2 gating. Although Bdel1/β2a currents exhibited more variable enhancement by SP, Bdel2/β2a current enhancement was lost at all voltages. Instead, inhibition was observed that matched the profile of N-current inhibition from CaV2.2 coexpressed with CaVβ3. Moreover, adding back exogenous palmitic acid minimized inhibition of Bdel2/β2a currents, suggesting that when palmitoylated CaVβ2a is sufficiently displaced, endogenously released AA can bind to the inhibitory site. These findings support our previous hypothesis that CaVβ2a's palmitoyl groups directly interact with an inhibitory site on CaV2.2 to block N-current inhibition by SP.


1994 ◽  
Vol 267 (5) ◽  
pp. H1654-H1662 ◽  
Author(s):  
S. P. Williams ◽  
A. K. Campbell ◽  
N. Roszell ◽  
L. Myatt ◽  
G. D. Leikauf ◽  
...  

This study tests the hypothesis that prostaglandins (PGs) released in response to phorbol esters act as modulators of the phorbol ester-induced smooth muscle contraction. The rate and magnitude of the phorbol 12-myristate 13-acetate (PMA)-induced contraction of deendothelialized rat aorta were decreased by the cyclooxygenase inhibitor, indomethacin. The thromboxane (Tx) A2/PGH2 receptor antagonist, SQ-29548, also inhibited PMA-induced contraction, and the magnitude of inhibition was greater than that due to indomethacin. PMA induced the release of PGI2, PGE2, PGF2 alpha, and arachidonic acid, but not TxA2. The amount of PGI2 released was greater than that of PGE2 and PGF2 alpha. Indomethacin blocked the PMA-induced release of PG, but not of arachidonic acid. In PMA-contracted tissues, PGF2 alpha, PGE2, and the stable PGI2 and PGH2 analogues, carbacyclin and U-46619, respectively, induced further contraction. Pretreatment of PMA-contracted tissues with SQ-29548 partially inhibited the PGF2 alpha- and PGE2-induced contractions, completely inhibited contraction to U-46619, and reversed the carbacyclin-induced contraction to relaxation. These results demonstrate that, in rat aorta, PMA induces the release of PGs that exert both contractile and relaxant effects but whose net effect is to accelerate and augment the contraction induced by PMA. The PG-induced increase in PMA contraction is mediated, in large part, through TxA2/PGH2 receptor activation. The ability of various PGs, including carbacyclin, to activate the TxA2/PGH2 receptor suggests that one or more of these PGs, in addition to, presumably, PGH2, may be responsible for the increase in PMA contraction. PGI2 is the only endogenously released PG that can account for the relaxant effect.


1984 ◽  
Vol 159 (3) ◽  
pp. 844-860 ◽  
Author(s):  
Z Marom ◽  
J H Shelhamer ◽  
M Kaliner

Human pulmonary macrophages (PM) obtained from surgically removed human lung tissue released a factor after exposure to activated zymosan that caused cultured human airways to release increased amounts of radiolabeled mucous glycoproteins. The factor was released maximally after 4-8 h of zymosan exposure and caused a dose-related increase in glycoprotein release; it was termed macrophage-derived mucus secretagogue (MMS). MMS release was produced in a dose-dependent fashion by activated but not by nonactivated zymosan. The activation of zymosan was C3 dependent, and C3b-coated Sepharose was also an effective stimulant. The data suggested that cell surface activation of the PM was a sufficient stimulus to cause MMS release and that both C3-dependent activation as well as Fc receptor activation were effective. The synthesis of MMS was sensitive to cycloheximide, and no active MMS was detectable intracellularly. To determine if MMS might be one of the oxidative derivatives of arachidonic acid, PM were incubated with cyclooxygenase and lipoxygenase inhibitors before activation. These maneuvers did not influence MMS generation. MMS-rich supernatants were then extracted into organic solvents or exposed to lipophilic resin; in both cases, MMS remained in the aqueous phase. Thus, MMS is not a derivative of arachidonic acid. Sequential fractionation of MMS on ultramembrane and gel filtration followed by isoelectric focusing and gel filtration indicated that MMS is a small (approximately 2000 daltons), acidic (pI, 5.15) molecule. Therefore, surface activation of human PM results in the synthesis and release of a small acidic molecule that causes airway mucous glands to secrete increased quantities of mucous glycoproteins.


1994 ◽  
Vol 266 (2) ◽  
pp. C406-C415 ◽  
Author(s):  
E. R. Lazarowski ◽  
R. C. Boucher ◽  
T. K. Harden

The effect of purinergic receptor agonists on arachidonic acid release was investigated in [3H]arachidonic acid-prelabeled human airway epithelial cells. Exposure of bronchial epithelial BEAS39 cells to extracellular ATP resulted in a marked release of unesterified [3H]arachidonic acid with maximal effect observed within 60-90 s. [3H]diacylglycerol and [3H]phosphatidic acid accumulated in parallel with [3H]arachidonic acid. ATP-stimulated [3H]arachidonic acid release with a K0.5 of 9 +/- 2 microM and UTP was equipotent; no effect was observed with P2Y- or P2X-purinergic receptor agonists or with adenosine. Similar results were obtained with primary cultures of normal human nasal epithelium, CF/T43 and HBE1 airway epithelial cell lines derived from a cystic fibrosis patient and from a normal donor, respectively, and HT-29 human colon carcinoma cells. ATP stimulated inositol phosphate formation in BEAS39 cells with a concentration dependence identical to that for [3H]arachidonic acid release. The effect of ATP on both [3H]arachidonic acid release and inositol phosphate formation was equally inhibited by pertussis toxin. The Ca2+ ionophore A-23187 mimicked the effects of ATP or UTP on arachidonic acid release, and a marked inhibitory effect was observed with thapsigargin. The protein kinase C inhibitor staurosporine partially inhibited ATP-stimulated [3H]arachidonic acid release. These data are consistent with the hypothesis that phospholipase A2 activation is secondary to P2U-purinergic receptor stimulation of D-myoinositol 1,4,5-trisphosphate production and calcium mobilization from intracellular stores.


2002 ◽  
Vol 282 (1) ◽  
pp. L12-L25 ◽  
Author(s):  
B. R. Cobb ◽  
F. Ruiz ◽  
C. M. King ◽  
J. Fortenberry ◽  
H. Greer ◽  
...  

We investigated adenosine (Ado) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) in vitro and in vivo. A2B Ado receptors were identified in Calu-3, IB-3-1, COS-7, and primary human airway cells. Ado elevated cAMP in Calu-3, IB-3-1, and COS-7 cells and activated protein kinase A-dependent halide efflux in Calu-3 cells. Ado promoted arachidonic acid release from Calu-3 cells, and phospholipase A2(PLA2) inhibition blocked Ado-activated halide efflux in Calu-3 and COS-7 cells expressing CFTR. Forskolin- and β2-adrenergic receptor-stimulated efflux were not affected by the same treatment. Cytoplasmic PLA2(cPLA2) was identified in Calu-3, IB-3-1, and COS-7 cells, but cPLA2 inhibition did not affect Ado-stimulated cAMP concentrations. In cftr(+) and cftr(−/−) mice, Ado stimulated nasal Cl− secretion that was CFTR dependent and sensitive to A2 receptor and PLA2 blockade. In COS-7 cells transiently expressing ΔF508 CFTR, Ado activated halide efflux. Ado also activated G551D CFTR-dependent halide efflux when combined with arachidonic acid and phosphodiesterase inhibition. In conclusion, PLA2 and protein kinase A both contribute to A2 receptor activation of CFTR, and components of this signaling pathway can augment wild-type and mutant CFTR activity.


1991 ◽  
Vol 261 (4) ◽  
pp. F578-F586 ◽  
Author(s):  
T. Katoh ◽  
K. Takahashi ◽  
J. Capdevila ◽  
A. Karara ◽  
J. R. Falck ◽  
...  

Renal glomerular and cortical metabolism of endogenous arachidonic acid by cytochrome P-450 epoxygenase yields 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EET). Using gas chromatography-mass spectrometry, we measured the synthesis of 8,9-EET from an endogenous pool of arachidonic acid in normal rat kidney. The (8S,9R) isomer was favored over the (8R,9S) isomer in a ratio (%) of 59 to 41 in isolated glomeruli and 68 to 32 in cortex tissue. (8S,9R)- but not (8R,9S)-EET elicited dose-dependent vasoconstriction on intrarenal administration in the euvolemic Munich-Wistar rat. Micropuncture measurements of glomerular dynamics revealed that (8S,9R)-EET increased afferent arteriolar resistance (RA) leading to reductions in single-nephron plasma flow rate (QA), net transcapillary hydraulic pressure difference (delta P), and consequently single-nephron glomerular filtration rate (SNGFR). There was no significant change in the value of the glomerular capillary ultrafiltration coefficient (Kf). In the presence of a cyclooxygenase inhibitor, indomethacin, the effects of 8,9-EET were reversed. RA fell leading to increases in QA and delta P, with resultant augmentation of SNGFR. Under these conditions, a modest reduction if Kf was noted. Thus (8S,9R)-EET is a stereoselective renal vasoconstrictor, preferentially generated over its optical isomer, (8R,9S)-EET, suggesting that it is biologically relevant and implying specific structural requirements for EET receptor activation. The principal mechanism of action of 8,9-EET is preglomerular vasoconstriction. The vasoconstrictor effect of 8,9-EET is CO dependent.


Sign in / Sign up

Export Citation Format

Share Document