A2 adenosine receptors regulate CFTR through PKA and PLA2

2002 ◽  
Vol 282 (1) ◽  
pp. L12-L25 ◽  
Author(s):  
B. R. Cobb ◽  
F. Ruiz ◽  
C. M. King ◽  
J. Fortenberry ◽  
H. Greer ◽  
...  

We investigated adenosine (Ado) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) in vitro and in vivo. A2B Ado receptors were identified in Calu-3, IB-3-1, COS-7, and primary human airway cells. Ado elevated cAMP in Calu-3, IB-3-1, and COS-7 cells and activated protein kinase A-dependent halide efflux in Calu-3 cells. Ado promoted arachidonic acid release from Calu-3 cells, and phospholipase A2(PLA2) inhibition blocked Ado-activated halide efflux in Calu-3 and COS-7 cells expressing CFTR. Forskolin- and β2-adrenergic receptor-stimulated efflux were not affected by the same treatment. Cytoplasmic PLA2(cPLA2) was identified in Calu-3, IB-3-1, and COS-7 cells, but cPLA2 inhibition did not affect Ado-stimulated cAMP concentrations. In cftr(+) and cftr(−/−) mice, Ado stimulated nasal Cl− secretion that was CFTR dependent and sensitive to A2 receptor and PLA2 blockade. In COS-7 cells transiently expressing ΔF508 CFTR, Ado activated halide efflux. Ado also activated G551D CFTR-dependent halide efflux when combined with arachidonic acid and phosphodiesterase inhibition. In conclusion, PLA2 and protein kinase A both contribute to A2 receptor activation of CFTR, and components of this signaling pathway can augment wild-type and mutant CFTR activity.

2001 ◽  
Vol 88 (3) ◽  
pp. 319-324 ◽  
Author(s):  
Ciro Indolfi ◽  
Eugenio Stabile ◽  
Carmela Coppola ◽  
Adriana Gallo ◽  
Cinzia Perrino ◽  
...  

1995 ◽  
Vol 306 (3) ◽  
pp. 765-769 ◽  
Author(s):  
R Levistre ◽  
M Berguerand ◽  
G Bereziat ◽  
J Masliah

Pretreatment of alveolar macrophages with cholera toxin inhibits the release of arachidonic acid induced by the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine. The results presented here show that cholera toxin might exert its inhibitory effect through the phosphorylation of Gi alpha by protein kinase A (PKA). (1) Gi-proteins from cells pretreated with cholera toxin showed parallel increases in their sensitivity to ADP-ribosylation by toxins in vitro and in Gi alpha phosphorylation. By contrast, the Gi alpha concentration was unchanged. (2) Cholera toxin pretreatment also decreased the functional activity of Gi, as assessed by the inhibition (80%) of agonist-induced binding of guanosine-5′-[gamma-thio]triphosphate (GTP[gamma S]). (3) These effects of cholera toxin were blocked by a specific PKA inhibitor, N-(2-[methyl-amino]ethyl)-3-isoquinolinesulphonamide dihydrochloride (H8) and mimicked by a cyclic AMP (cAMP) analogue and a phosphatase inhibitor. (4) Gi alpha was also phosphorylated in vitro by the catalytic subunit of PKA. In contrast with other cell systems, the stimulation of protein kinase C seems to have no effect on the sensitivity of Gi to ADP-ribosylation or on its phosphorylation. Therefore, the phosphorylation of Gi-proteins by PKA seems to be the actual target of the negative control of arachidonic acid release via the cAMP-mediated pathway.


1994 ◽  
Vol 106 (4) ◽  
pp. 890-898 ◽  
Author(s):  
Mrinalini C. Rao ◽  
Grace B. Bissonnette ◽  
Teresa Mahaffey ◽  
William B. Guggino ◽  
Jay L. Goldstein

1999 ◽  
Vol 274 (10) ◽  
pp. 6107-6113 ◽  
Author(s):  
Véronique Leblais ◽  
Sophie Demolombe ◽  
Geneviève Vallette ◽  
Dominique Langin ◽  
Isabelle Baró ◽  
...  

2011 ◽  
Vol 300 (5) ◽  
pp. C989-C997 ◽  
Author(s):  
Pimthanya Wanichawan ◽  
William E. Louch ◽  
Kristin H. Hortemo ◽  
Bjørg Austbø ◽  
Per Kristian Lunde ◽  
...  

The cardiac Na+/Ca2+ exchanger 1 (NCX1) is an important regulator of intracellular Ca2+ homeostasis and cardiac function. Several studies have indicated that NCX1 is phosphorylated by the cAMP-dependent protein kinase A (PKA) in vitro, which increases its activity. However, this finding is controversial and no phosphorylation site has so far been identified. Using bioinformatic analysis and peptide arrays, we screened NCX1 for putative PKA phosphorylation sites. Although several NCX1 synthetic peptides were phosphorylated by PKA in vitro, only one PKA site (threonine 731) was identified after mutational analysis. To further examine whether NCX1 protein could be PKA phosphorylated, wild-type and alanine-substituted NCX1-green fluorescent protein (GFP)-fusion proteins expressed in human embryonic kidney (HEK)293 cells were generated. No phosphorylation of full-length or calpain- or caspase-3 digested NCX1-GFP was observed with purified PKA-C and [γ-32P]ATP. Immunoblotting experiments with anti-PKA substrate and phosphothreonine-specific antibodies were further performed to investigate phosphorylation of endogenous NCX1. Phospho-NCX1 levels were also not increased after forskolin or isoproterenol treatment in vivo, in isolated neonatal cardiomyocytes, or in total heart homogenate. These data indicate that the novel in vitro PKA phosphorylation site is inaccessible in full-length as well as in calpain- or caspase-3 digested NCX1 protein, suggesting that NCX1 is not a direct target for PKA phosphorylation.


2019 ◽  
Vol 97 (5) ◽  
pp. 526-535 ◽  
Author(s):  
Shanmukha K. Doddi ◽  
Githavani Kummari ◽  
Jagannadham M.V. ◽  
Arunasree M. Kalle

Given the well-established diversified signaling pathways for histone deacetylase 4 (HDAC4) and the regulation of HDAC4 by several post-translational modifications (PTMs), including phosphorylation, sumoylation, and ubiquitination, an unbiased and detailed analysis of HDAC4 PTMs is needed. In this study, we used matrix-assisted laser desorption/ionization time of flight (MALDI-TOF/TOF) to describe phosphorylation at serine 584 (Ser584) along with already-known dual phosphorylation at serines 265 and 266 (Ser265/266), that together regulate HDAC4 activity. Overexpression of site-specific HDAC4 mutants (S584A, S265/266A) in HEK 293T cells, followed by HDAC activity assays, revealed the mutants to be less active than the wild-type protein. In vitro kinase assays have established that Ser584 and Ser265/266 are phosphorylated by protein kinase A (PKA). Luciferase assays driven by the myocyte enhancer factor 2 (MEF2) promoter and real-time PCR analysis of the MEF2 target genes show that the S584A and S265/266A mutants are less repressive than the wild-type. Furthermore, treatment with PKA activators such as 8-Bromo-cAMP and forskolin, and silencing either by shRNA or its inhibitor H-89 in a mouse myoblast cell line (C2C12) and in a non-muscle human cell line (K562), confirmed in vivo phosphorylation of HDAC4 in C2C12 but not in K562 cells, indicating the specific functional significance of HDAC4 phosphorylation in muscle cells. Thus, we identified PKA-induced Ser584 phosphorylation of HDAC4 as a yet unknown regulatory mechanism of the HDAC4–MEF2 axis.


Sign in / Sign up

Export Citation Format

Share Document